
INFERENCE OF STRING MAPPINGS
FOR LANGUAGE TECHNOLOGY

DISSERTATION

Presented in Partial Fulfillment of the Requirements

for the Degree Doctor of Philosophy

in the Graduate School of The Ohio State University

By

Martin Jansche, M.A.

* * * * *

The Ohio State University
2003

Dissertation Committee:

Chris Brew, Adviser

W. Detmar Meurers

Gerald Penn

Richard Sproat

Approved by

Adviser
Department of Linguistics

Copyright by

Martin Jansche

2003

ABSTRACT

Mappings between formal languages play an important role in speech and lan-

guage processing. This thesis explores issues related to inductive inference or

learning of string-to-string mappings. The kinds of mappings considered fall

within the larger class of rational transductions realized by finite state machines.

Such mappings have applications in speech synthesis, speech recognition, and

information retrieval and extraction. The present work takes its examples from

speech synthesis, and is in particular concerned with the task of predicting the

pronunciation of words from their spelling. When applied to this task, determin-

istic mappings are also known as letter-to-sound rules.

The three most commonly used metrics for evaluating letter-to-sound rules

are prediction error, which is not generally applicable; string error, which can

only distinguish between perfect and flawed pronunciations and is therefore too

coarse; and symbol error, which is based on string edit distance and subsumes

string error. These three performance measures are independent in the sense that

they may prefer different models for the same data set. The use of an evaluation

measure based on some version of string edit distance is recommended.

Existing proposals for learning deterministic letter-to-sound rules are system-

atized and formalized. Most formal problems underlying the learning task are

shown to be intractable, even when they are severely restricted. The traditional

approaches based on aligned data and prediction error are tractable, but have

ii

other undesirable properties. Approximate and heuristic methods are recom-

mended. The formalization of learning problems also reveals a number of new

open problems.

Recent probabilistic approaches based on stochastic transducers are discussed

and extended. A simple proposal due to Ristad and Yianilos is reviewed and re-

cast in an algebraic framework for weighted transducers. Simple models based on

memoryless transducers are generalized to stochastic finite transducers without

any restrictions on their state graphs. Four fundamental problems for stochas-

tic transducers (evaluation, parameter estimation, derivation of marginal and

conditional models, and decoding) are identified and discussed for memoryless

and unrestricted machines. An empirical evaluation demonstrates that stochastic

transducers perform better on a letter-to-sound conversion task than determinis-

tic mappings.

iii

ACKNOWLEDGMENTS

Columbus – Euro trash.

Jerry Seinfeld, in the Seinfeld episode The Library

This thesis would not exist in its present form, if at all, were it not for the advice,

encouragement, and support I received from many individuals. Needless to say,

the usual exculpatory remarks are in effect.

I’d first like to thank my thesis committee, Chris Brew, Detmar Meurers, Ger-

ald Penn, and Richard Sproat. Chris has been an outstanding adviser, knowledge-

able, generous with his time, pointing out new research directions, and always

pushing for clarity. Detmar provided detailed feedback on many empirical and

presentational aspects, and pointed out connections to other work that had pre-

viously gone unnoticed. Gerald played many crucial roles at various stages of

this project: as my mentor at Bell Labs during the summer of 2000 he got me

interested in machine learning of letter-to-sound rules, and has provided insight-

ful feedback on many algorithmic and mathematical issues. Richard has always

been a source of valuable and virtually instantaneous advice, and many questions

discussed here originated in conversations with him.

I’d further like to thank the Department of Linguistics, the Department of

Computer and Information Science, and the Graduate School for their support.

I am grateful for the liberal and undogmatic environment at Ohio State that al-

lowed me to pursue many diverse interests. The influence of several memorable

iv

courses is visible at many points in this thesis: the seminar on finite state meth-

ods in language processing taught by Bob Kasper and Erhard Hinrichs in Sp/99

sparked my interest in finite state language processing; Gerald Baumgartner’s

course on compiler implementation in Au/99 gave me the background for turn-

ing this general interest into working programs; Chris Brew’s statistical NLP sem-

inar in Sp/00 got me thinking about machine learning; and Rephael Wenger’s

courses on computational complexity in Sp/00 and Au/00 provided the back-

ground for much of Chapter 3 of this thesis.

A major source of learning and inspiration came from internships at Bell Labo-

ratories and AT&T Labs. I’d like to thank Steve Abney, Michiel Bacchiani, Bob Car-

penter, Jennifer Chu-Carroll, Julia Hirschberg, George Kiraz, Gerald Penn, Brian

Roark, Chilin Shih, Richard Sproat, and Evelyne Tzoukermann for making my

summers in New Jersey educational and enjoyable.

I’m indebted to the following people who answered technical questions or

sent me copies of publications: Antal van den Bosch, Alexander Clark, Jason Eis-

ner, Mehryar Mohri, Michael Riley, and Izhak Shafran. There are undoubtedly

others who were inadvertently left out. Whoever you might be: please think

nothing of it and accept my apologies.

At Ohio State, the help of Chris Brew, Carl Pollard, and Tim Watson in address-

ing the many bureaucratic challenges was indispensable.

Special thanks go to Shravan Vasishth for many conversations about academic

issues, computing, empiricism, life, logic, music, statistics, and the theory of gram-

mar; to Nathan Vaillette for unwittingly being a role model; and to Lijun Feng for

her love, support, and understanding.

To Restaurant Japan a final thanks for all the fish.

v

VITA

1973 . Born in Karlsruhe, Germany

1995 . Zwischenprüfung Chinese Studies,

University of Heidelberg

1996 . Zwischenprüfung Computational Linguistics,

University of Heidelberg

1998 . M. A. Linguistics, The Ohio State University

1998–2002 . Graduate Teaching and Research Associate,

The Ohio State University

PUBLICATIONS

1. Martin Jansche. Learning local transductions is hard. Mathematics of

Language 8, 2003.

2. Martin Jansche and Steven P. Abney. Information extraction from voicemail

transcripts. Empirical Methods in Natural Language Processing, 2002.

3. Martin Jansche. Information extraction via heuristics for a movie showtime

query system. Eurospeech 7, 2001.

4. Martin Jansche. Re-engineering letter-to-sound rules. NAACL 2, 2001.

vi

FIELDS OF STUDY

Major Field: Linguistics

Area of Specialization: Computational Linguistics

vii

TABLE OF CONTENTS

Abstract . ii

Acknowledgments . iv

Vita . vi

List of Figures . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Letter-to-Sound Conversion . 5

1.3 Overview of the Thesis . 11

2 Evaluation Metrics and Data . 16

2.1 Introduction . 16

2.2 Data Sets . 19

2.2.1 The CMU Pronouncing Dictionary 21

2.2.2 The NETtalk Data Set . 24

2.3 Evaluation Metrics . 31

2.3.1 String Error . 33

2.3.2 Prediction Error . 36

2.3.3 Symbol Error . 38

2.4 Interconnections . 40

2.4.1 Prediction Error vs. Symbol Error 41

2.4.2 Prediction Error vs. String Error 50

viii

2.4.3 Symbol Error vs. String Error 54

2.5 Accuracy, Optimization and Approximations 55

2.6 Conclusion . 56

3 Learning Deterministic Transducers . 59

3.1 Introduction . 59

3.2 Subsequential Transducers . 60

3.3 Strictly Local Transducers . 65

3.3.1 Locality Assumption . 67

3.3.2 Aligned Data Requirement . 75

3.4 Morphisms of Free Monoids . 78

3.5 Learning Tasks and their Complexity 84

3.5.1 Exact Solutions . 87

3.5.2 Approximate Solutions . 96

3.6 Conclusion . 103

4 Learning Memoryless Stochastic Transducers 105

4.1 Introduction . 105

4.1.1 Stochastic Transducers . 105

4.1.2 The “Noisy Channel” Metaphor 107

4.1.3 Memoryless Stochastic Transducers 113

4.2 Evaluating the Mass Function of a Joint Model 116

4.2.1 The Generic Forward Algorithm 117

4.2.2 The Generic Backward Algorithm 124

4.3 Estimating the Parameters of a Joint Model 126

4.3.1 Derivation of EM Updates . 128

4.3.2 Calculating Expected Counts 134

4.4 Obtaining Conditional Models . 136

ix

4.4.1 Evaluating the Mass Function of a Conditional Model 137

4.4.2 Marginal Automata . 145

4.4.3 Conditional Stochastic Transducers 148

4.5 Using a Joint Model for Prediction . 151

4.6 Conclusion . 157

5 Learning General Stochastic Transducers 159

5.1 Introduction . 159

5.2 Evaluating the Mass Function of a Joint Model 164

5.2.1 Reconstruction of the Forward Algorithm 167

5.2.2 Computing Forward and Backward Probabilities 169

5.3 Estimating the Parameters of a Joint Model 178

5.3.1 Calculating Expected Counts 178

5.3.2 On So-Called Expectation Semirings 184

5.4 Obtaining Conditional Models . 189

5.4.1 Marginal Automata . 189

5.4.2 Conditional Stochastic Transducers 190

5.4.3 Epsilon-Removal in the Real Semiring 192

5.5 Using a Joint Model for Prediction . 198

5.5.1 MAP Decoding . 198

5.5.2 Minimum Risk Decoding . 200

5.6 Conclusion . 208

6 Experiments . 210

6.1 Introduction . 210

6.2 Is Prediction Error Overly Fussy? . 211

6.3 Brute-Force Word Error Minimization 216

6.4 Local Search . 221

x

6.5 Bounds on the Performance of Classifier-Based Approaches 224

6.6 Effects of Viterbi Training and Decoding 233

6.7 Classification vs. Transduction . 236

6.8 Modeling Word Length . 239

6.9 Conclusion . 243

7 Conclusions and Future Work . 246

Bibliography . 252

Index . 267

xi

LIST OF FIGURES

1.1 The world according to Klatt [1987] 7

2.1 CMUdict transcription symbols and IPA correspondences 22

2.2 NETtalk transcription symbols and IPA correspondences 26

2.3 Terminology used in conjunction with evaluation metrics 33

2.4 Examples of predicted pronunciations, contrasting prediction error

rate and symbol error rate . 41

2.5 Example data set with inconsistent alignments. The predicted pro-

nunciations were produced by majority classifiers and minimize

prediction error . 43

2.6 Letters and corresponding phonemes among the data in Figure 2.5 44

2.7 Example data set with non-uniformly broken ties. The predicted

pronunciations minimize symbol error 45

2.8 Example data set with multi-phoneme symbols. The predicted pro-

nunciations were produced by majority classifiers and minimize

prediction error . 46

2.9 Letters and corresponding phonemes among the data in Figure 2.8 47

2.10 Example data set with multi-phoneme symbols. The predicted pro-

nunciations minimize symbol error 48

xii

2.11 Example data set with multi-phoneme symbols. The predicted pro-

nunciations minimize string error . 50

2.12 Example data set. The predicted pronunciations were produced by

majority classifiers and minimize prediction error 51

2.13 Example data set. The predicted pronunciations minimize string

error . 52

2.14 Examples of predicted pronunciations, contrasting prediction error

rate and string error rate . 53

3.1 An unambiguous but nondeterministic transducer realizing the ra-

tional function {〈a, a〉, 〈ε, ε〉}{〈aa, ba〉}∗ 63

3.2 An illustration of strict locality in terms of a symmetric sliding win-

dow of size 5 . 68

3.3 A local sequential transducer that introduces left context 82

3.4 A local subsequential transducer that introduces right context . . . 83

3.5 Certificate verification algorithm for FMC 91

3.6 Reduction from MIN-VFMC to MIN-2SAT 99

4.1 The generic Forward algorithm . 118

4.2 Example of an alignment trellis for the string pair 〈ab, stu〉 122

4.3 The generic Backward algorithm . 125

4.4 The EM algorithm . 130

4.5 Calculating expected counts of basic edit operations for memory-

less transducers . 135

4.6 A stochastic transducer realizing P2 restricted to {〈x′, f g〉 | x′ ∈ Σ∗} 139

xiii

4.7 An unlabeled directed weighted graph that abstracts away from

irrelevant details included in Figure 4.6 141

4.8 The generic single-source algebraic path algorithm for almost-acyc-

lic weighted directed graphs . 145

4.9 The generic marginalization algorithm for memoryless transducers 147

4.10 An acyclic graph which is equivalent to the almost-acyclic graph

from Figure 4.7 . 148

4.11 The conditionalization algorithm for memoryless stochastic trans-

ducers . 149

4.12 A DAWG resulting from the neg-log transform of the transducer

displayed in Figure 4.6 . 154

5.1 The generalized Floyd–Warshall all-pairs algebraic path algorithm 174

5.2 The generalized Floyd–Warshall all-pairs algebraic path algorithm,

using in-place updates . 176

5.3 Schematic decomposition of paths that traverse edge e 180

5.4 Calculating expected parameter counts for general stochastic trans-

ducers . 184

5.5 A stochastic automaton with ε-transitions 193

5.6 The correct ε-removal algorithm . 195

5.7 Mohri’s ε-removal algorithm . 196

5.8 An ε-free automaton equivalent to the one in Figure 5.5 197

5.9 A stochastic automaton representing the posterior distribution P

used in minimum risk decoding . 207

xiv

6.1 Excerpt from the cost matrix used for cost-sensitive training and

evaluation of a classifier on the NETtalk data set 214

6.2 Comparison between ordinary training and cost-sensitive training

of classifiers . 215

6.3 Phonemes corresponding to 〈t〉 in the training data 217

6.4 Letter-to-phoneme mapping that optimizes prediction accuracy . . 219

6.5 Letter-to-phoneme mapping that optimizes word accuracy (only

showing letters for which it differs from Figure 6.4) 220

6.6 Comparison of word accuracy between the greedy and the optimal

solution . 221

6.7 Minimization of string error using local search 223

6.8 Number of distinct windows and average ambiguity per window

as functions of context/window size 227

6.9 Performance bounds as functions of context/window size for 1,000

words of training data . 229

6.10 Performance bounds as functions of context/window size for ap-

prox. 19,000 words of training data 230

6.11 Bound on prediction error as a function of both context/window

size and training set size . 232

6.12 Comparison of log likelihood during EM training and Viterbi training235

6.13 Comparison of errors made by the same transduction model for

different training and decoding strategies 236

6.14 Comparison of approaches based on classification vs. transduction 238

6.15 Distribution of word length in the NETtalk data set 241

6.16 A stochastic automaton giving rise to a negative binomial model of

string length . 242

xv

CHAPTER 1

INTRODUCTION

It was a reaction I learned from my father: have no respect whatsoever
for authority; forget who said it and instead look at what he starts with,
where he ends up, and ask yourself, “Is it reasonable?”

Richard P. Feynman, What do you care what other people think?

1.1 Motivation

Many language and speech processing applications can be naturally broken down

into a number of common subtasks, such as classification, ranking, clustering, or

translation. This thesis focuses on translation tasks which can be conceptualized

as relations or mappings between formal languages. More specifically, the map-

pings considered here are of a very restricted kind, namely those that are at most

regular (finite state) or even more restricted. Despite these restrictions, such map-

pings can play useful roles in several areas, including:

Speech synthesis Every orthographic word must be mapped to a phonemic rep-

resentation. Frequent and/or exceptional words are typically looked up

in a pronunciation dictionary. However, dictionaries are finite, but there

seems to be no absolute limit to the number of previously unseen words

encountered even after huge amounts of text have been seen [Kornai, 1999,

2002; Baayen, 2001]. A text-to-speech system must assign pronunciations

1

to all words, including previously unseen ones. For certain highly regular

(“shallow”) writing systems this is not very problematic (for example all

commonly used transcription systems of Mandarin Chinese are essentially

phonemic in nature), or it amounts to a classification problem (the standard

writing system for the Chinese languages assigns only a few pronunciations

to each character; disambiguating which pronunciation is most likely cor-

rect in a given context is a classification problem). But for languages like

English with rather “deep” orthographies [Sproat, 2000], previously unseen

words must be given a pronunciation based mostly on their orthography.

The problem is then one of inferring from a pronunciation dictionary a suit-

able mapping from orthographic strings to phonemic strings, also known

as a letter-to-sound mapping.

Speech recognition Automatic speech recognizers are usually trained on a cor-

pus of speech data aligned with their transcriptions. Such corpora are typ-

ically constructed by human transcribers in a long and labor-intensive pro-

cess. There are however situations where both speech data and the corre-

sponding textual transcriptions are available, for example broadcast news

with closed-captioning, or name dialing applications where each participant

speaks and types in their own name. In such situations one can induce

mappings between letters and the phonemes that have been produced by a

preliminary acoustic model. Such mappings are useful for segmenting un-

labeled data into words, aiding automatic transcription, or for constructing

lexical databases for speech recognizers. The learning task is quite different

from the one associated with speech synthesis: since both an orthographic

and a phonemic representation are available the mediating mapping can

2

theoretically be simpler (less information is needed to go from letters to

phonemes, since the phonemes are already known); on the other hand one

has to deal with uncertainty in the phonemic transcription – in fact, multiple

competing transcriptions are usually provided when the task of transcribing

is carried out automatically. Typically this need for dealing with uncertainty

calls for stochastic models of rational transductions.

Information extraction Information extraction often amounts to mapping from

linear textual representations to labeled records (“feature structures”, “slot

and filler” representations, or “frames”). Often the extracted information

has to be standardized. This is most obvious for information extraction from

speech transcripts [see Jansche and Abney, 2002], but holds as well for infor-

mation extraction from text: there are several ways to say aloud, or write

down, numbers and alphanumeric sequences. For example, an utterance in-

cluding the words ‘fourteen ninety-five’ might refer to a monetary amount

like $14.95 or to the year 1495. Context may be used to disambiguate, and,

depending on what kind of entity ‘fourteen ninety-five’ is, it may have to

be transduced to different representations. Since most numbers that one en-

counters in text are small, such transductions are, for all practical purposes,

rational [Sproat, 2000]. Automatic acquisition of such transductions may

be desirable, especially if the number of different entities (years, monetary

amounts, telephone numbers, social security numbers, room numbers, door

lock combinations, tax form numbers, etc.) is large.

Information retrieval Information retrieval may benefit from a measure of the

phonemic similarity between different orthographic forms. A standard ex-

ample is searching a name dictionary: a user searches for a person named

3

‘McCune’ whose name may be recorded in the dictionary as ‘Macune’, ‘Mc-

Keown’, ‘MacEwan’, etc. This can be accomplished by a crude phonemic

hashing algorithm like Soundex [Russell, 1918], or may call for a mapping

between letters and phonemes that assigns scores to likely pronunciations

of a given letter string, or to likely transcriptions of a given phoneme string.

Stochastic transducers may again be suitable.

Historical linguistics Genetic relationships between languages are established

on the basis of a convincing inventory of cognates, i. e., pairs of semanti-

cally similar words from both languages whose phonemic representations

exhibit a systematic relationship. Generally it is the fact that a systematic

mapping can be established between reasonably sized subsets of the vocab-

ularies of the two languages that counts as evidence of relatedness, whereas

superficial similarities do not. A typical example is Latin ‘habere’ and Ger-

man ‘haben’ (which overlap semantically in the meaning ‘to have’): they

may look similar, but this superficial similarity does not give rise to a regu-

lar, systematic correspondence on a larger scale. Rather, one can observe

a systematic correspondence between Latin initial 〈c〉 /k/ and German/

English 〈h〉 /h/ (‘cornu’ – ‘Horn’ – ‘horn’; ‘cor’, ‘cordis’ – ‘Herz’ – ‘heart’;

‘canis’ – ‘Hund’ – ‘hound’; ‘centum’ – ‘hundert’ – ‘hundred’), among other,

similarly systematic correspondences summarized by Grimm’s Law. The

identification of cognates, appropriately constrained, amounts to inference

of a phoneme-to-phoneme mapping over a large dictionary of semantically

similar words. Systematicity of the mapping can be measured, for example

in terms of entropy. This would allow us to quantify the overall regularity of

sound change, i. e., it allows us to talk about degrees of Neogrammaticality.

4

The concrete examples in this thesis all pertain to letter-to-sound mappings

used in speech synthesis systems. However, as is clear from the discussion of the

application areas, the requirements that speech synthesis alone would impose

on the learning task are somewhat impoverished: for example, it is not immedi-

ately obvious from the task description that speech synthesis would benefit from

stochastic transduction models. Considering the broader range of applications

discussed above, stochastic models are most widely applicable and can also be

beneficially applied to the task of learning letter/phoneme correspondences for

speech synthesis.

1.2 Letter-to-Sound Conversion

Letter-to-sound conversion determines the pronunciation of a word on the basis

of its orthographic form. For singling out the orthographic level, the following

notation is used:

〈letters〉

The pronunciation of a word is represented as a string of phonemes. Phoneme

symbols are taken from the International Phonetic Alphabet (IPA) [International

Phonetic Association, 1999]. Another notational device is used to indicate the

phonemic level:

/fonimz/

Klatt [1987] provides an excellent overview of speech synthesis and delineates

the role of letter-to-sound conversion in speech synthesis systems. For a longer

introduction see Dutoit 1997; for a more detailed description of text analysis see

Sproat 1997; Sproat et al. 1998. One of Klatt’s [1987] figures is reproduced here as

5

Figure 1.1 and shows a high-level flowchart for obtaining the pronunciation of an

isolated word. Letter-to-sound rules appear under the label ‘L-T-S’.

Klatt [1987] clearly did not intend to give a definitive description of the archi-

tecture of a speech synthesizer. Many variations are possible, and many aspects

are language specific. For example, ‘affix stripping’ and ‘affix reattachment’ in

Figure 1.1 seem to be biased toward the morphologies of European languages. A

more neutral term would be morphological analysis, which clearly has some role to

play for letter-to-sound conversion [van den Bosch, 1997]. However, we follow

Klatt [1987] and view morphological analysis as a separate and distinct process-

ing step [see also van den Bosch, 1997].

The flowchart mentions a few of the modules that can play a role in finding

the pronunciation of a word, and other modules are conceivable. The relative

importance of these modules will vary from language to language. For example,

English has a fair number of homographs whose pronunciation may depend on

word sense and/or part of speech. One could argue that letter-to-sound conver-

sion for the Chinese languages [Shih and Sproat, 1996] is predominantly a ho-

mograph disambiguation problem, since all standardized character sets used for

Chinese are finite and each character has a small, known inventory of possible

pronunciations. We ignore the issue of homograph disambiguation in order to

keep the problem we address simple and uniform.

We are interested in the letter-to-sound conversion task as an isolated problem,

since it is that perspective that makes any techniques developed for it widely ap-

plicable. The problem is simply one of mapping from a string of orthographic

symbols to a string of phonemic symbols. While additional information such as

word sense, part of speech, morphology, or even etymology [Font Llitjós, 2001]

6

 "whole word"
 dictionary probe

 affix
 stripping

no

phonemes,
stress,

parts-of-speech

yes

 "root"
 dictionary probe

yes

 L-T-S +
 stress rules

no

no

 affix
 reattachment

yes

Figure 1.1: The world according to Klatt [1987].

7

may be helpful in practice, they would only serve to complicate the abstract prob-

lem we are concerned with. Note also that Figure 1.1 distinguishes between letter-

to-sound rules and stress rules, and we will do the same. Viewed abstractly, the

task of predicting stress symbols is very similar to predicting phoneme symbols.

We prefer to focus on a single coherent task as an illustration of the general learn-

ing problems we are interested in. That task will be letter-to-sound conversion,

excluding stress assignment.

Letter-to-sound conversion is often referred to as grapheme-to-phoneme conver-

sion [see for example Galescu and Allen, 2001; Rentzepopoulos and Kokkinakis,

1991]. For some authors the terms letter and grapheme are completely interchange-

able. For others they are not. Some would prefer it if English had graphemes

like 〈th〉, 〈mb〉 (as in 〈thumb〉), or 〈bt〉 (as in 〈debt〉). The choice of grapheme in-

ventory is immaterial from a purely formal point of view: a learning algorithm

that works for the grapheme inventory {a, b, c, . . . , z} and grapheme strings like

〈t h u m b〉 will also work for a grapheme inventory of {a, b, c, . . . , z, th, mb, . . . }

and grapheme strings like 〈th u mb〉, since only a change in alphabets is involved.

However, assuming the availability of graphemic strings like 〈th u mb〉 begs

the question of how the graphemic parse was obtained from the letter string

〈thumb〉. A deterministic preprocessing step that does not become a new source of

errors is hardly ever possible [van den Bosch, 1997], except of course for writing

systems or transcription systems that are close to the phonemic representation by

design (for example, the Pinyin transcription of Mandarin Chinese), but in that

case there is hardly any need for graphemic parsing.

A major source of concern is the problematic status of a parsed grapheme

string as an intermediate representation: how much agreement would one find if

one were to ask native speakers to segment orthographic words graphemically? If

8

there is no commonly agreed upon standard for parsing orthographic words into

grapheme strings, we are left with an intermediate representation whose quality

can only be evaluated indirectly by its usefulness for any subsequent processing

steps. This is undesirable, since it makes separate development of the preprocess-

ing component impossible, and end-to-end training of the overall module is also

likely to be hard. Fortunately, it is possible to stay agnostic about the status of

graphemes as far as the learning problems are concerned. We will see another

example of a problematic intermediate representation later, namely alignments

of letter and sounds, which cannot be glossed over or ignored as easily.

The literature on machine learning of letter-to-sound rules falls into roughly

two major classes, depending on the kinds of models used: deterministic map-

pings that produce a single pronunciation for a given letter sequence; and stochas-

tic nondeterministic mappings that assign probabilities to all conceivable pronun-

ciations of a given letter sequence. All approaches are essentially symbolic in na-

ture, in the sense that they map from discrete representations (letter strings) to

discrete representations (phoneme strings).

Within the deterministic tradition NETtalk [Sejnowski and Rosenberg, 1987]

has sought and received wide attention, and has served as the blueprint or cata-

lyst for many subsequent approaches. The method starts with aligned data and

uses a sliding window (which ensures locality of the mapping) to produce train-

ing instances. Those training instances are then handed to a classifier learner;

in the case of NETtalk artificial neural networks are used, but many other classi-

fier learners have been proposed, including decision trees [Lucassen and Mercer,

1984], memory-based learning [Stanfill and Waltz, 1986], default rules [Hochberg

et al., 1991], and transformation-based learning [Huang et al., 1994]. Despite such

9

superficial diversity, all these approaches share a common shortcoming: they re-

quire an aligned training corpus. Aligning a pronunciation dictionary can be

done manually or (semi-)automatically, but it has to be kept in mind that this is

fundamentally an optimization task: find the best alignment. What is the objec-

tive function that is being maximized, i. e., which alignment is best? In this case

the best answer is: an alignment that enables the classifier learner to optimally ex-

ploit any and all regularities in the data. This suggests that learning deterministic

mappings may be quite hard in general, since evaluating the objective function of

the alignment step would require another optimization (learning a classifier) to

be carried out. This thesis gives a formal characterization of the hardness of a few

variants of this problem. It turns out that even simple variants are intractable in

the general case, even if we only require approximate solutions.

Stochastic approaches often suffer from the same problem of requiring aligned

data [for example Rentzepopoulos et al., 1993; Minker, 1996]. This is unfortunate,

since it is in fact possible to formulate parameter estimation procedures based

on the EM algorithm that do not require an explicit alignment of the data. Such

an algorithm was described by Ristad and Yianilos [1998] for a very simple class

of stochastic transducers, although it seems to have been known since much ear-

lier. (This situation is reminiscent of the formulation of the EM algorithm itself

[Dempster et al., 1977].) This thesis shows how a parameter estimation algorithm

for memoryless transducers [Ristad and Yianilos, 1998] can be generalized and

applied to general stochastic finite transducers.

10

1.3 Overview of the Thesis

Chapter 2 begins with an overview of evaluation measures and data sets that

could be used for evaluating a letter-to-sound component. Several metrics have

been proposed for measuring the quality of the pronunciations predicted by a

letter-to-sound component. The simplest one is called string error and is anal-

ogous to misclassification loss for classification tasks. However, this analogy is

not particularly good, since unlike in ordinary classification tasks the predictions

have internal structure. A more fine grained measure is symbol error, which is

based on weighted string edit distance. A third measure, prediction error, is of

limited generality and is closely tied to traditional approaches to learning letter-

to-sound rules, which are discussed in Chapter 3.

Section 2.4 studies the relationships between the three main loss functions

discussed in Section 2.3. Using realistic, but biased, excerpts from existing pro-

nunciation dictionaries, we show that the three evaluation measures give rise to

independent optimization problems: for example, minimizing string error often

leads to an increase in symbol error, and vice versa. We argue that string error is a

very crude performance measure and is of limited practical use, since it provides

very little information that can be used to compare different approaches.

Chapter 3 is concerned with on deterministic approaches to learning letter-to-

sound rules, which includes many traditional proposals found in the literature.

In Section 3.2 an approach based on grammatical inference is reviewed and sev-

eral desiderata for an ideal algorithm are identified. Ideally, an algorithm should

be able to take a standard pronunciation dictionary as training data. In that sense,

the traditional approaches described in Section 3.3 are far from ideal, since they

require input data in a specific format, which we refer to as aligned data. Formally,

11

all that is required is that letter strings and corresponding phoneme strings are of

the same length, so that there is a natural correspondence between the nth letter of

a word and the nth phoneme. This requirement, discussed in Section 3.3.2, holds

for the traditional approaches which reduce the letter-to-sound problem to a clas-

sification problem. The key insight is to treat a letter plus some fixed amount of

surrounding context (and potentially other features like the part-of-speech of the

word) as an instance that is labeled with a phoneme or other transcription sym-

bol. The induced classifier predicts these labels, and one can then apply it to each

letter of a word in succession and string together the predicted labels to form the

predicted pronunciation. During supervised training the label assigned to a letter

must be known, hence the need for aligned data. This requirement is problem-

atic because pronunciation dictionaries do not normally have this same-length

property, nor can alignments be naturally observed. Moreover, the quality of the

alignment determines the quality of the classifier induced on the basis of aligned

data, but virtually all traditional approaches start with one alignment that is never

modified or influenced by the induced classifier. The traditional approaches suf-

fer from another shortcoming, namely the evaluation measure that serves as the

optimization objective during their training is prediction error, which is highly

task specific.

In light of these issues, we ask two more or less orthogonal questions: First,

what happens if one tries to learn from unaligned data, discovering simple align-

ments automatically as an integral part of learning? Second, what are the con-

sequences of using other evaluation measures as optimization objectives? In or-

der to simplify the discussion, Section 3.4 reduces the traditional approaches to

a function learning problem involving two related and highly restricted classes

of functions. The properties of the formal learning problem associated with such

12

function are discussed in Section 3.5. We show in Section 3.5.1 that automati-

cally discovering alignments while searching for a consistent hypothesis is a hard

problem under many reasonable optimization objectives. But even if we do not

require consistent hypotheses and do not need to discover alignments as part of

learning, finding an optimal hypothesis is also difficult under many reasonable

loss functions, as discussed in Section 3.5.2. These results provide some new jus-

tification for the traditional approaches, which have managed to avoid a number

of computationally challenging problems. Showing that a problem is principle

very hard also provides a challenge to come up with approximate or heuristic

solutions. However, there are more opportunities for heuristics and simplifying

assumptions in a nondeterministic probabilistic scenario.

Such a setting is the topic of Chapter 4. It reviews an existing approach that

uses a very simple class of weighted nondeterministic translation devices known

as memoryless transducers. These are weighted finite state machines with a fixed,

trivial state graph. There are four fundamental problems associated with weigh-

ted and/or stochastic finite transducers. The problem of computing the weight

or probability they assign to a given pair of strings is discussed in Section 4.2.

The second problem, parameter estimation, discussed in Section 4.3, is about ad-

justing the parameters of a stochastic transducer on the basis of training data.

The third problem, appearing in Section 4.4, is the task of deriving a transducer

for the conditional distribution given a joint distribution represented by another

stochastic transducer. The fourth problem, in Section 4.5, is about using a trans-

ducer for prediction: given an input string, what is the best output string? While

reviewing some of the solutions that have been proposed for memoryless stochas-

tic transducers, Chapter 4 casts the problems in terms of operations on weighted

13

transducers and provides some background on the algebraic and other concepts

used in conjunction with weighted finite state machines.

The perspective developed in Chapter 4 is used in Chapter 5 to generalize

the approach based on memoryless transducers. Memoryless transducers are of

limited expressivity, but have the advantage that many algorithms are particu-

larly straightforward in this special case. Many of the concepts developed for

the memoryless case carry over to the more general setting, but the algorithmic

issues are more intricate. The same four fundamental problems that provided the

structure for Chapter 4 apply unchanged, but the answers given in Chapter 5 are

different. The algorithms for computing the probability of a pair of strings (Sec-

tion 5.2) depend partly on the graph structure of the transducer. In the worst case,

an all-pairs algebraic path algorithm can be used, after some modifications that

make it applicable to stochastic transducers. Parameter estimates (Section 5.3) can

be derived along the same lines as for memoryless transducers, and the algorithm

we provide is less costly, though less general, than an alternative from the recent

literature. Deriving conditional transducers (Section 5.4) is a bit more involved

than for the memoryless case, and involves several operations on weighted trans-

ducers. Among those is ε-removal, which requires some corrections to an existing

algorithm to work properly. Finding the best output (Section 5.5) is essentially the

same as for memoryless machines. However, we also discuss a different notion

of “best” in terms of the recommended evaluation measure from Chapter 2.

Chapter 6 focuses on empirical and practical issues. The relationship between

prediction error and symbol error is often complex in practice (Section 6.2): the

numbers for raw prediction error and raw symbol error tend to be similar, so that

minimizing prediction error can be seen as a heuristic for minimizing symbol er-

ror. Direct minimization of string error is explored in Section 6.3 and Section 6.4,

14

first using exhaustive search, then in terms of greedy local hill-climbing, but ul-

timately it has to be abandoned. Section 6.5 asks how well approaches based on

classifier learning can ultimately perform: the state of the art is still quite a bit

away from its upper performance bound, and perfection seems to be out of reach.

In Section 6.6 we investigate whether cutting corners during parameter estima-

tion and decoding for stochastic transducers is permissible, before comparing

our approach to letter-to-sound conversion, which is based on stochastic trans-

ducers, with a traditional approach based on classifiers in Section 6.7. Finally in

Section 6.8 we point toward fundamental statistical modeling issues surrounding

stochastic transducers that need to be addressed in future work.

15

CHAPTER 2

EVALUATION METRICS AND DATA

2.1 Introduction

The goal of evaluating a letter-to-sound module is to arrive at an assessment of

its performance on a set of test data and an estimate of its expected performance

on unseen future data.

Not too long ago, Divay and Vitale [1997, p. 516] rightly complained that ‘no

standardized tests exist for evaluating letter-to-sound systems’. The situation re-

mains essentially unchanged, even though in general more emphasis is now be-

ing placed on systems evaluation [Hirschman and Thompson, 1997], and generic

recommendations have been formulated for evaluating TTS systems [Pols, 1997]

and their letter-to-sound components [Gibbon et al., 1997, pp. 513–515].

The perceived quality of a letter-to-sound component can depend on many fac-

tors and should ideally be assessed in the context of a full TTS system evaluation

[Gibbon et al., 1997, ch. 12]. For example, the letter-to-sound component might

predict an “incorrect” phoneme string that happens to coincide with an attested

pronunciation variant; or a small segmental error might be introduced without

any confusion because the word form could already be determined unambigu-

ously before the error occurred; or a correct segment could have been replaced by

16

a phonetically very similar segment without leading to confusion, e. g. /wæbIt/

may be close enough (thanks partly to Mel Blanc) to the pronunciation of 〈rabbit〉

to not cause any major confusion. On the other hand, in densely populated lexical

neighborhoods even the slightest error might cause confusion. Furthermore, it is

possible that a later module renders an otherwise good prediction by the letter-to-

sound component unintelligible, for example, when a concatenative synthesizer

chooses a bad unit or has to modify and distort a poorly matching unit.

One kind of evaluation would involve human listeners who would be asked to

judge the intelligibility of synthetic speech where all aspects of the system were

held constant except for the letter-to-sound component. However, that kind of

evaluation is beyond the scope of the present work, as it would involve a full TTS

system. Moreover the results of such an end-to-end evaluation would depend

on the quality of those components that feed into the letter-to-sound module and

those that consume its output. In order to do well on an end-to-end evaluation

a letter-to-sound module should have been optimized using end-to-end training.

End-to-end evaluation would then assess the contribution of a letter-to-sound

module to an entire speech synthesizer, which could be larger than if the letter-

to-sound module was run in isolation (when the preceding text analysis makes

mistakes that the letter-to-sound module can detect and correct), or lesser (when

subsequent components introduce mistakes that degrade intelligibility).

In practice it is much easier and less costly to assess the performance of a

letter-to-sound module separately and in isolation from any other components

(unit testing). This avoids the dependencies that can arise in end-to-end evalu-

ation and is thus more suitable for initially comparing different techniques for

letter-to-sound conversion. Typically this is done by comparing the output of the

17

module on isolated words with the corresponding entries in a pronunciation lexi-

con or similar reference standard (“gold standard”) [Gibbon et al., 1997, pp. 513–

515]. Such comparisons have recently been carried out for a small number of

languages and TTS systems [Pols, 1997; Yvon et al., 1998; Damper et al., 1999].

While these comparisons provide valuable insights into the relative performance

of existing letter-to-sound components, many of the systems that were evaluated

had been built without reference to the evaluation metrics used for comparison

– or, in a few cases, without any consideration for rigorous performance evalua-

tion [Damper et al., 1999, pp. 162–163]. A modern development approach should

establish an evaluation metric from the outset, so that this metric can be incorpo-

rated into the objective functions for any optimization steps during development,

so that, ideally, the common situation of development using one criterion and

evaluation a different criterion can be avoided.

As some evaluation metrics depend on alignment information, which is ab-

sent from many data sets, we begin with a review in Section 2.2 of lexical re-

sources that one might use for development or evaluation. Section 2.3 describes

the three most commonly used evaluation metrics, which measure various devi-

ations from reference pronunciations recorded in a data set. All of these metrics

take on nonnegative values and are therefore suitable as loss functions or similar

objective functions. They are compared and contrasted in Section 2.4, where it

is demonstrated that they may select different optimal models on the same data

set. Section 2.5 defines a corresponding accuracy measure for each error measure

and discusses the differences between maximizing accuracy vs. minimizing error,

and also reiterates the point that the evaluation metric should ideally also be the

objective optimized during model training.

18

2.2 Data Sets

The availability of certain evaluation metric is dependent on properties of the

data sets used for development or evaluation. We will briefly describe two pro-

nunciation dictionaries for American English that are available as text files.

The number of speech corpora and lexical databases that can be used to as

a reference standard against which letter-to-sound systems can be measured is

growing steadily [Gibbon et al., 1997, ch. 6]. For English (both British and Ameri-

can English) the following resources exist and have been used to evaluate the text

analysis components of TTS systems:

CELEX [Baayen et al., 1993, 1996]. The English part contains 160,595 word form

entries (including multi-word units) and their British English pronuncia-

tions, plus information about syllable structure, morphology, frequency, etc.

CUVOALD Computer-Usable Version of the Oxford Advanced Learner’s Dictio-

nary [Mitton, 1992]. This version contains 70,646 words with their British

English pronunciations plus part-of-speech tags, rudimentary frequency in-

formation, and syllable counts.

CMUdict The Carnegie Mellon Pronouncing Dictionary [Weide, 1998]. It contains

127,069 entries of words and their American English pronunciations. Lower

in quality than the other dictionaries, it has quite a few errors and inconsis-

tencies. More details are provided below.

PRONLEX [Kingsbury et al., 1997]. It contains 90,988 entries of words with Amer-

ican English pronunciations, and was designed to cover the vocabulary of

two large speech corpora distributed by the Linguistic Data Consortium.

19

NETtalk data set [Sejnowski, 1988]. Based on Webster’s Pocket Dictionary, it con-

tains 20,008 word forms aligned with their American English pronuncia-

tions. More details are provided below.

HML Hoosier Mental Lexicon [Nusbaum et al., 1984]. Also based on Webster’s

Pocket Dictionary, it contains 19,321 word forms together with their Ameri-

can English pronunciations, parts of speech, syllable structures, familiarity

ratings, etc. The selection of entries is somewhat peculiar: for example, it

contains an entry for 〈yes〉, but not for 〈no〉; there are entries for 〈Monday〉

through 〈Saturday〉, but not for 〈Sunday〉, though there is one for 〈sundae〉;

and the digits from zero to nine are 〈zero〉, 〈one〉, 〈three〉, 〈five〉, 〈six〉, 〈seven〉,

and 〈nine〉, i. e., the positive integral powers of two are missing.

Any approach based on mixing and matching different resources is bound to

run into serious difficulties. Constructing a unified dictionary of words common

to all of them, merging two dictionaries, or training a model on data drawn from

one dictionary and evaluating on data from a different dictionary are all hindered

by the fact that these resources represent different dialects, which are transcribed

at different levels of detail. For example, 〈audible〉 is transcribed in CUVOALD as

/Od@bl/, but in the NETtalk data set as /Od@bl
"
/ with a syllabic /l

"
/ – a contrast that is

absent from the transcription system used by CUVOALD. The distinction between

plain /l/ and syllabic /l
"
/ is made in HML, which on average appears to include

more phonetic details than the other dictionaries. For instance, 〈audible〉 is tran-

scribed as /Od1bl
"
/ in HML, which distinguishes between a near-close near-front

unrounded vowel /I/ and a close central unrounded vowel /1/. This distinction

is not made by CUVOALD, the NETtalk data set, or CMUdict, where 〈audible〉 is

transcribed as /Ad@b@l/. However, while HML’s /1/ often corresponds to /I/ or

20

/@/ in the other dictionaries, the correspondences are idiosyncratic. For example,

when the past tense morpheme 〈ed〉 is transcribed as /1d/ in HML, it corresponds

to /@d/ in the NETtalk data, but on the other hand 〈liquid〉 is /lIkw1d/ in HML and

/lIkwId/ in the NETtalk data set. Damper et al. [1999, sec. 5.2 and appendix B] dis-

cuss post hoc ‘harmonization’ of different phoneme inventories in the context of

an empirical comparison.

It is therefore generally best to use a single lexical resource for training and

evaluation. Among the available resources, we primarily use the NETtalk data

and CMUdict. The NETtalk data set, which will be described in Section 2.2.2, is

unique in that it contains alignment information. CMUdict is the largest Amer-

ican English dictionary in the above list and is available without any practical

restrictions (“prescriptions”).

2.2.1 The CMU Pronouncing Dictionary

The Carnegie Mellon Pronouncing Dictionary [Weide, 1998], henceforth CMUdict,

is a large data set of American English pronunciations. An entry in CMUdict con-

sists of a letter string and a sequence of phoneme-plus-stress symbols. For exam-

ple:

SLAUGHTERHOUSE S L AO1 T ER0 HH AW2 S

The phonetic transcriptions include lexical stress information on vowel symbols:

in this example, AO1 carries primary stress, AW2 has secondary stress, and ER0 is un-

stressed. Predicting stress patterns is beyond the scope of the present work, and

so we will ignore most stress information. For greater clarity we want to avoid

the use of idiosyncratic transcription systems as much as possible, and prefer the

International Phonetic Alphabet (IPA) [International Phonetic Association, 1999].

21

aa /A/ k /k/
ae /æ/ l /l/
ah0 /@/ m /m/
ah1, ah2 /2/ n /n/
ao /O/ ng /N/
aw /aU< / ow /o/
ay /aI</ oy /OI</
b /b/ p /p/
ch /Ù/ r /ô/
d /d/ s /s/
dh /D/ sh /S/
eh /E/ t /t/
er /Ä/ th /T/
ey /e/ uh /U/
f /f/ uw /u/
g /g/ v /v/
hh /h/ w /w/
ih /I/ y /j/
iy /i/ z /z/
jh /Ã/ zh /Z/

Figure 2.1: CMUdict transcription symbols and IPA correspondences.

The pronunciation of 〈slaughterhouse〉 recorded in CMUdict can be rendered in IPA

as /slOtÄhaU< s/. A full list of IPA equivalents of the transcription symbols used by

CMUdict appears in Figure 2.1. We have taken the liberty to use lowercase letters

and stripped off most indicators of lexical stress, with the exception of ah, which

is rendered in IPA as /@/ when unstressed and as /2/ when stressed. The symbols

listed in Figure 2.1 are treated as units: for diphthongs like ay /aI</ this is indi-

cated by a tie bar, and the indivisible nature of the affricates ch /Ù/ and jh /Ã/ is

represented typographically by the use of ligatures.

22

The dictionary may contain multiple entries with a common orthographic

string. For example, there are three entries for the letter string 〈minute〉:

MINUTE M IH1 N AH0 T

MINUTE(2) M AY0 N UW1 T

MINUTE(3) M AY0 N Y UW1 T

Parenthesized numbers indicate the presence of multiple entries. No rationale

for the presence of multiple entries is given, the order in which multiple entries

appear seems arbitrary, and their status is never clarified. For example, the first

entry for 〈minute〉 lists the pronunciation /mIn@t/, so we know it to be the entry

for the noun minute, whereas the second and third entry correspond to an adjecti-

val usage. These last two entries are minor pronunciation variants and have the

same meaning and part of speech, which is distinct from the nominal sense of

minute. However, the nature of these distinctions is not made explicit in the dic-

tionary. When using CMUdict for development or evaluation of a letter-to-sound

component, we may have to treat such words specially.

Simply selecting the first of multiple entries for a word will not do, due to

inconsistencies in the numbering of entries. For example, the morpheme 〈day〉

in the names of the days of the week is either pronounced /de/ (as in the iso-

lated word 〈day〉, only unstressed) or /di/ (so that 〈Thursday〉 sounds almost like

〈thirsty〉). This variation is reflected in CMUdict, but not consistently. If the first en-

try for each day of the week is selected, a week sounds like this: /m2ndi/, /tuzdi/,

/wEnzdi/, /TÄzde/, /fôaI<di/, /sætÄdi/, /s2nde/. For no apparent reason, the pro-

nunciations of 〈Thursday〉 and 〈Sunday〉 are treated as exceptional.

CMUdict also contains a fair number of abbreviations, some Internet domain

names, and other “nonstandard words” [Sproat et al., 2001]. For example, 〈mph〉

23

has two entries, one with pronunciation /EmpieÙ/ (spelling it), and one with pro-

nunciation /maI<lzpÄaU< Ä/ (expanding it into 〈miles per hour〉). Neither pronunci-

ation is particularly relevant for the problem of learning letter/phoneme corre-

spondences: pronouncing a word by concatenating the names of its letters, i. e.,

spelling it, is easy and does not require automatic learning methods; on the other

hand, expanding abbreviations into the words they abbreviate is hard without

any knowledge of likely expansions, so the practical solution is often to put ab-

breviations in an exception dictionary. In other words, the letter string 〈mph〉

is only interesting for the learning task when it represents the interjection /m
"
f/,

which is not included in CMUdict. A good indicator that an entry might be an ab-

breviation is the difference in length between its letter string and phoneme string:

if the phoneme string is longer, there is a good chance that it is an abbreviation,

though this also catches ordinary words like 〈cubism〉 /kjubIz@m/, and erroneous

entries like 〈disparages〉 /dIspEôIÃ@sô2ptIv/.

2.2.2 The NETtalk Data Set

The NETtalk data set [Sejnowski, 1988] is much smaller than CMUdict, but by no

means a subset, as more than one fifth of its entries are not found in CMUdict. An

entry consists of a letter string, transcription string, a stress and syllabification

pattern, and an indicator of foreign or “irregular” word forms. The dictionary is

aligned because in each entry the three strings (letters, transcription, stress) have

the same length. For example:

fuchsia fYS--x- >1>>>0< 1

24

This is the entry for 〈fuchsia〉. The number 1 in the fourth column indicates that

this is not a foreign word (which is, strictly speaking, wrong), but has an “irreg-

ular” pronunciation, which is given as fYS--x-. We again prefer the use of the

standard IPA [International Phonetic Association, 1999], and this allows us to rep-

resent the pronunciation of 〈fuchsia〉 as /fjuS@/. The IPA correspondences of the

NETtalk transcription symbols are listed in Figure 2.2. This inventory list differs

from all others in the surveyed literature – for example Stanfill and Waltz, 1986,

p. 1226; Bakiri and Dietterich, 2001, p. 29; and Sejnowski, 1988, the primary de-

scription of the NETtalk data set – in that it is correct and minimally complete.

Note that the NETtalk transcription system uses uppercase and lowercase letters,

as well as non-alphabetic symbols. As before, phonemic units are indicated ty-

pographically: diphthongs like A /aI</ have a tie bar, and the affricates C /Ù/ and

J /Ã/ are represented by ligatures. Note especially that a few NETtalk symbols

denote two phonemes, as indicated by an absence of tie bars or ligatures. They

are: K /kS/, X /ks/, Y /ju/, ! /ts/, # /gz/, and + /wA/. The special symbol - denotes

zero phonemes, i. e., it is silent. When transliterating NETtalk transcriptions into

IPA we may occasionally want to preserve the alignment information; we then

use the symbol /-/ even in IPA transcriptions.

The NETtalk transcription system contains more than just phonemic informa-

tion, since the dashes are meaningful, although they are phonetically empty. We

can see this more easily if we line up the letters, transcription symbols, and the

stress/syllable pattern vertically, like this:

fuchsia

fYS--x-

>1>>>0<

25

a /A/ C /Ù/
b /b/ D /D/
c /O/ E /E/
d /d/ G /N/
e /e/ I /I/
f /f/ J /Ã/
g /g/ L /l

"
/

h /h/ M /m
"
/

i /i/ N /n
"
/

k /k/ O /OI</
l /l/ R /Ä/
m /m/ S /S/
n /n/ T /T/
o /o/ U /U/
p /p/ W /aU< /
r /ô/ Z /Z/
s /s/ @ /æ/
t /t/ * /w

˚
/, /û/

u /u/ ^ /2/
v /v/ K /kS/
w /w/ X /ks/
x /@/ Y /ju/
y /j/ ! /ts/
z /z/ # /gz/
A /aI</ + /wA/

Figure 2.2: NETtalk transcription symbols and IPA correspondences.

26

This makes it visually clear that the letter 〈f〉 is aligned with the transcription

symbol f (and hence the phoneme /f/) and occurs in the onset (denoted by >)

of a syllable; the letter 〈u〉 is aligned with the transcription symbol Y (and hence

the two phonemes /ju/) and is stressed; the letter 〈c〉 is aligned with the symbol

S (and hence the phoneme /S/) and is part of the onset of the second syllable;

the letter 〈h〉 is aligned with the transcription symbol - and is therefore silent,

but nevertheless part of the (astoundingly big) onset of the second syllable; and

so forth until 〈a〉, which is silent and part of the coda (denoted by <) of the last

syllable.

We do not question the wisdom of this alignment, and simply note that the rep-

resentation of stress/syllable information depends too much on the letters. Say

the alignment was slightly different (and arguably more reasonable), like this:

fuchsia

fY--S-x

>1<<>>0

Then the syllabic status of the letter 〈h〉, for example, would appear to be differ-

ent. However, the issue of whether it is part of the coda of the first syllable or

the onset of the second syllable seems irrelevant, given that it is silent in both

cases. It is worth noting that predicting stress/syllable patterns seems to be a

harder task than predicting phonemes, as evidenced by the generally lower per-

formance scores [see for example Bakiri and Dietterich, 2001]. Church [1985] goes

even further when he states that it ‘is impossible to determine the stress of a

word by looking through a five or six character window’, which is what many

traditional approaches (Section 3.3) do. On the other hand, Bakiri and Dietterich

27

[2001] use a window that is three times larger than that, which improves the qual-

ity of stress assignment considerably. It also makes it possible to treat the task

of predicting stress labels as fundamentally the same as the task of predicting

transcription symbols, regardless of whether stress is predicted separately or as

a combination of transcription-plus-stress symbols [van den Bosch, 1997]. In that

sense the approach taken by Bakiri and Dietterich [2001] does not add any new

kinds of challenges beyond the basic task of predicting transcriptions, but has to

make a number adjustments in order to cope with NETtalk’s arguably unreason-

able representation of stress and syllabification. Since we are primarily interested

in general techniques for learning string-to-string mappings, for which letter-to-

sound rules are already a good test case, stress assignment is beyond the scope

of the present endeavor. Consequently we will omit all stress and syllabification

information from here on forward.

The notion of alignment implicit in the NETtalk data is somewhat special: only

the phonemic representations are padded with special symbols to make them the

same length as the corresponding letter strings. Letter strings are not padded. If a

letter corresponds to more than one phoneme, one of the special multi-phoneme

symbols is used. This way, a letter-to-sound component can scan its input letter

by letter (possibly including a certain amount of context) and predict transcrip-

tion symbol for each letter position. If the letter strings were padded with special

symbols, resulting, for example, in

f-uchsia

fyu--S-x

then the letter-to-sound component would have to treat insertion points specially,

e. g. by predicting their occurrence, or by assuming that they occur regularly

28

throughout the letter string [Jansche, 2001]. Riley [1991] discusses several options

for dealing with insertions in the context of phoneme-to-phone conversion, or

pronunciation modeling.

The presence of multi-phoneme symbols begs the question of how they ended

up where they are. On what basis would one decide when to use a multi-pho-

neme symbol instead of several single-phoneme symbols? The NETtalk data set

contains minimal pairs like the following:

inflection inflexion

InflEkS-xn InflEK-xn

By consulting Figure 2.2 we can see that the symbols kS denote the same phoneme

string as the symbol K, and the two entries are therefore homophonous. Using the

multi-phoneme symbol K in the transcription of 〈inflexion〉 seems to be motivated

exclusively by considerations of systematicity, a desire to pick a transcription sym-

bol corresponding to the letter 〈x〉 analogous to other entries.

The desire to impose systematicity in the transcriptions and alignments goes

so far that incorrect or impossible transcription strings are occasionally included.

In his description of the NETtalk data set Sejnowski [1988] explicitly mentions

the case of 〈eighth〉, which is transcribed as if it were pronounced /eT/ instead of

/etT/. Another systematic anomaly, one which he fails to mention, concerns the

morpheme 〈one〉, occurring on its own or in compounds like 〈oneself〉. One might

think that 〈one〉 is homophonous with 〈won〉, but not so in the NETtalk data set,

where the situation is like this:

won one

w^n wn-

29

Apparently the experts who created that data set felt that it was important that

the letter 〈n〉 in 〈one〉 was aligned with the phoneme /n/, even when that meant

either introducing another two-phoneme symbol to represent /w2/ (which was

not done), or transcribing 〈one〉 incorrectly as /wn/.

Constructing an aligned dictionary like the NETtalk data set from an ordinary

unaligned pronunciation dictionary like CMUdict is therefore not simply a mat-

ter of aligning the phonemes with respect to the letters of each word, but must

also take into account the conversion of two or more phonemes into special multi-

phoneme symbols. All of this must be carried out in a uniform and systematic

way, and seems to have occasionally gone wrong in the NETtalk data set. Incon-

sistencies can be illustrated using such minimal pairs as

guy buy

g-A bA-

where the letter substring 〈uy〉 is uniformly pronounced /aI</, yet the alignments

differ. A similar example is

tong tongue

taG- t^-G--

in which 〈ng〉 is pronounced /N/, despite differences in the alignments. We will

see yet another example later on in Figure 2.5. One could justifiably count as a

mistake any situation in which fragments of words share the same letter sequence

and the same phoneme sequence (ignoring padding symbols and mapping multi-

phoneme symbols to phonemes) but exhibit differences in alignment. Such align-

ment inconsistencies could be detected using a variant of the technique described

by Dickinson and Meurers [2003].

30

It is not clear what standard should be used in producing alignments, perhaps

because there is no objective measure of the goodness of an alignment, other than

the internal consistency of an aligned dictionary. For example, one principle be-

hind the NETtalk alignments seems to be to align /Ä/ with an 〈r〉 rather than a

“vowel letter” in words like 〈liar〉 /laI<-Ä/, 〈diner〉 /daI<n-Ä/, or 〈color〉 /k2l-Ä/. An-

other principle seems to require aligning a phoneme that corresponds to a longer

sequence of letters with the first letter in that group. This seems to be behind the

alignment of 〈colonel〉 /kÄ--n-l
"
/, where /Ä/ corresponds to the first occurrence of

〈o〉. Not only is this a rare alignment – in fact it occurs precisely once – more

importantly, other than a general tie breaking principle there seems to be no way

to decide which alignment is “right”, or even whether 〈colonel〉 /k-Ä-n-l
"
/ would

have been “better”.

While an aligned dictionary contains potentially useful information, the align-

ments themselves may become sources of uncertainty and inconsistency. When

using the NETtalk dictionary for development or evaluation of a letter-to-sound

component, we may have to take this into account as another potential source of

errors.

2.3 Evaluation Metrics

Evaluation metrics are used to compare predicted pronunciations against refer-

ence pronunciations, which usually come from a held-out evaluation data set. In

this section we will define several evaluation metrics, conceptualized as loss func-

tions, that have been used in the literature. A comparison of these metrics will

follow in Section 2.4.

31

The only formal requirement placed on an evaluation metric is that it maps

from pairs of objects under comparison to the nonnegative real numbers. An

evaluation metric need not be a metric in the technical sense of satisfying the

triangle inequality and symmetry, and taking on the value zero iff its arguments

are identical, though many evaluation metrics do in fact have some or all of these

properties.

Evaluation metrics obviously play an important role in evaluating and com-

paring the letter-to-sound components of a TTS system. As noted above, such

evaluations often take on the form of unit testing, for practical reasons. Ideally,

for an evaluation metric used during unit testing to be considered effective, it

should be able to accurately predict an upper bound on the error introduced by

the letter-to-sound component in an end-to-end evaluation of an entire TTS sys-

tem. In reality, the extent of such a correlation has not been investigated for the

various evaluation metrics that have been proposed in the literature. Since we

are not concerned with end-to-end evaluation, we will not investigate this issue

further.

The main evaluation metric used for evaluation should ideally be optimized

during development. In other words, it should contribute to the objective func-

tion of any optimizations carried out during development. Typically this means

minimizing the expected loss (risk), or an upper bound or approximation of it

(such as the empirical risk). The loss functions discussed below differ greatly in

terms of the optimization problems they give rise to.

The principal definition of loss is in terms of errors. Errors can be made at

different levels, as will be discussed in the rest of this section. In the speech recog-

nition literature, a certain terminology is already established, but it does not carry

over easily to the letter-to-sound setting without the potential for confusion. In

32

Speech recognition Letter-to-sound Generic term
Basic unit word phon(em)e symbol
Sequence sentence word string
Meta-Sequence text sentence

Figure 2.3: Terminology used in conjunction with evaluation metrics.

many speech recognition applications the basic units are words, and performance

is usually reported in terms of word error rate. The next larger level at which er-

rors are tallied in speech recognition is the sentence or utterance, i. e., a sequence

of words. For letter-to-sound applications, the basic units are phonemes and the

next larger units are words, viewed as sequences of phonemes. Unless we make

it clear which application domain we are talking about, the term word error rate is

somewhat confusing, since it may refer to basic units in speech recognition and

language modeling, or to larger units in letter-to-sound conversion. To avoid con-

fusion we use the term symbol (and symbol error rate etc.) when referring to basic

units, and string when referring to a sequence of basic units. A summary of this

terminology is displayed in Figure 2.3.

2.3.1 String Error

The recommendation of Damper et al. [1999] seems attractive at first, because of

its simplicity: they use a 0-1-loss function that counts the pronunciation of an en-

tire word as correct (zero loss) just in case it matches the reference pronunciation

perfectly. This measure, which we refer to generically as string error is simple, rig-

orous, and conservative, since it arguably underestimates the perceived quality of

33

a TTS system, which may tolerate a certain amount of errors. On the other hand,

optimization under 0-1-loss usually creates integer programming problems that

we cannot even expect to approximate efficiently, let alone solve exactly; further

details can be found in Section 3.5 in the next chapter.

A related high-level 0-1-loss function is sentence error, as included in the results

listed by Yvon et al. [1998], which counts an entire sentence as correct just in case

its pronunciation was predicted correctly. This is an informative evaluation mea-

sure especially for languages with non-trivial phonemic effects that cross word

boundaries (e. g. liaison in French). Despite their similar nature, there are several

important differences between string (word) error and sentence error:

• On the one hand sentence error appears to be an extremely conservative

measure, since a single pronunciation error can render an otherwise impec-

cable sentence wrong. On the other hand, a system could theoretically ren-

der a small number of sentences utterly incomprehensible and receive a rela-

tively high sentence error score. Word error has similar shortcomings (more

on this below), but they are arguably less severe.

• Word error can be used as an optimization objective (see Section 3.5), al-

though this seems only feasible for very simple models. Optimizing sen-

tence error is quantitatively a much harder problem, not only because the

average sentence length measured in letters or phonemes is much higher

than the average word length, but also because simple models are no longer

applicable.

A simple deterministic model might take little or no context into account

for computing a letter-to-phoneme mapping. This is only a minor problem

34

within a word, since it is quite likely that a given letter (plus context) ap-

pears at most once within a word. If a letter-in-context appears more than

once there is a possibility that the word is exceptional in the sense that there

is no way to assign the same pronunciation to all occurrences of that letter

while correctly predicting the pronunciation of the word. For the very sim-

ple deterministic model whose training is discussed in Section 6.3, roughly

one third of the (aligned) training data are not utilized because they contain

multiple occurrences of the same letter with different pronunciations. (On

the other hand, using just a single letter of context would virtually eliminate

such exceptional words.) The same model cannot be applied to sentences

instead of words, since the chances of finding the same letter with differ-

ent pronunciation more than once are much higher, which would mean that

most of the training data would be useless, since a single guaranteed mis-

take in a sentence means that it need not be taken into account when opti-

mizing sentence error.

• What sets word error apart from all other evaluation criteria discussed here

is the fact that one can calculate the expected number of previously unseen

word types in a given amount of word tokens (for example, how many pre-

viously unseen words we expect to find in the next million words of news-

paper text, after having encountered a few million words already). This

number is nonzero even if the number of previously seen words is large

[Baayen, 2001]. By contrast, the orthographic and phonemic inventories are

always fixed and assumed to be known. If a letter-to-sound component is

only used for out-of-dictionary words, one can then calculate the expected

35

coverage for various dictionary sizes [Damper et al., 1999]. It is not clear

how such a calculation could be carried out for sentences instead of words.

We use the term string error to refer to the absolute number of words in an

evaluation data set whose predicted pronunciations differ from their reference

pronunciations. When we speak of string error rate we mean the relative fraction

of words in an evaluation data set whose predicted pronunciations deviated from

the reference standard.

2.3.2 Prediction Error

Within the long tradition of approaches that rely on aligned data, perhaps the

most prominent example is the NETtalk system [Sejnowski and Rosenberg, 1987]

and its aligned data set [Sejnowski, 1988; Blake and Merz, 1998] discussed in Sec-

tion 2.2.2.

The advantage of working with aligned data is that a letter sequence and cor-

responding transcription sequence are of the same length. Learning same-length

transducers is conceptually not very different from learning acceptors. Usually,

the problem is restricted much further, so that the letter-to-sound conversion prob-

lem can be formulated in terms of a simpler classification problem. For each letter

in a word there is a corresponding symbol in the aligned phonemic transcription,

and since the inventory of transcription symbols is finite, and in fact very small,

one can perform letter-to-sound conversion by applying a classifier to each letter

position and concatenating the individual predictions. Dietterich [2002] gives an

excellent overview of this paradigm and related approaches, and we discuss its

application to letter-to-sound transductions further in Section 3.3.

36

Among the features one can use for predictions are such diverse information

sources as the letter context, the one-sided phoneme context, as well as global

properties of the word such as its contextual part of speech or its linguistic origin.

It has been shown empirically [Lucassen and Mercer, 1984] that non-local context

does not carry much information about the pronunciation of a given letter. Many

approaches, including NETtalk, rely exclusively on features of the local letter con-

text for prediction. As discussed in Section 3.4, such approaches essentially boil

down to learning alphabetic substitutions.

For any approach that reduces the letter-to-sound conversion task to separate

tasks of classifying each letter (plus context), a natural evaluation metric is classi-

fication error or prediction error . This is simply the number of mistakes the under-

lying classifier makes when predicting transcription symbols. Since the predicted

transcription string and the reference transcription string are of equal length, pre-

diction error is the same as the Hamming distance between the two transcription

strings. The prediction error rate is just the empirical error of the underlying classi-

fier on the evaluation data set.

The performance figures reported by most approaches that require aligned

training data – this includes NETtalk [Sejnowski and Rosenberg, 1987] and other

approaches trained primarily on the NETtalk data [for example Stanfill and Waltz,

1986; Stanfill, 1987; Bakiri and Dietterich, 1993, 2001], but applies also more gener-

ally to many approaches based on simple classifier learning [for example van den

Bosch and Daelemans, 1993] – are usually the prediction error rate (or prediction

accuracy) of the underlying classifiers. Note that figures for prediction error (rate)

are crucially dependent on the inventory of transcription symbols used by the

evaluation data set, since the underlying classifiers predict transcription symbols,

not phonemes.

37

2.3.3 Symbol Error

Another measure of performance that is sometimes used is based on the string

edit distance [Wagner and Fischer, 1974; Kruskal, 1983] between the predicted

pronunciation and the reference pronunciation of a word. Because symbol er-

ror is defined in terms of the predicted phoneme string, which does not use

padding symbols and in which all multi-phoneme transcription symbols have

been mapped to the phonemes they represent, it is conceptually similar to string

error, and unlike prediction error, which is defined in terms of transcription sym-

bols and alignments. The effects of this conceptual difference are discussed in

Section 2.4.1.

In any concrete evaluation, several details need to be spelled out, including

the allowable edit operations and their costs used for computing the string edit

distance, as well as what kind of normalization was used in order to obtain a

relative error rate from raw edit distance.

In the simplest case, we can use the Levenshtein distance (see page 121), which

has uniform costs for insertions, deletions and substitutions. The symbol error

of a word is then the minimal number of insertions, deletions and substitutions

required to transform the predicted symbol (phoneme) string into the reference

symbol string.

A relative measure of error is less easily defined, since it is not clear what we

should divide the absolute edit distance by. In the Automatic Speech Recognition

(ASR) literature, the analogous notion of word error rate is obtained by dividing

(normalizing) the edit distance by the number of words in the reference transcrip-

tion. We will speak generically of symbol error rate defined as raw edit distance

divided by the length of the reference string. Per our terminological remarks in

38

conjunction with Figure 2.3, this is meant to encompass word error rate of ASR as

well as what we may call phoneme error rate of letter-to-sound modules. It is essen-

tially the same as what Fisher [1999] calls phone error rate, but others [for example

Luk and Damper, 1996] also speak of it more neutrally in terms of symbols.

A desirable property of this definition of symbol error rate is that it is pro-

portional to the absolute edit distance (raw symbol error), since the normaliz-

ing constant depends only on the fixed reference string. A minor drawback is

the somewhat unintuitive result that the error rate can exceed 1.0 when the pre-

dicted string is longer than the reference string. An example of this appears in

Figure 2.14. Symbol error (rate) can be extended to sets of string pairs by adding

the individual edit distances for each individual string (and dividing by the total

length of all reference strings).

Crucially, string edit distance need not be parameterized using costs which are

uniformly either zero or one. In fact, there can be separate costs for each basic edit

operation. For example, substituting the phoneme /æ/ for the phoneme /E/ could

have much lower cost than replacing it with /Ù/. The loss L(x, x′) incurred by

predicting a certain pronunciation x when the reference pronunciation is x′ need

not be symmetric, i. e., generally L(x, x′) 6= L(x′, x). For example, omitting a final

/t/, especially after another stop consonant as in 〈strict〉 /stôIkt/, may generate a

small loss, but adding a final /t/ where the reference standard does not have one

would be worse, since that would be like saying 〈start〉 instead of 〈star〉.

While weighted edit distance can easily accommodate more phonetically real-

istic versions of symbol error, the necessary empirical work in this area has not

been done. The phonetics literature contains confusion studies that assess the

similarity of consonants or of vowels, but in the most general case the parameters

39

for weighted edit distance have to provide costs for all possible combinations, in-

cluding comparisons between vowels and consonants, plus provide insertion and

deletion costs, for which empirical data are very hard to find.

Perhaps a better approach would be to view the loss L(x, x′) as a word confu-

sion probability, which in the simplest case can be computed exactly like string

edit distance (this will be the topic of Section 4.2). Moreover, the parameters of

such a probability distribution could be estimated from a list of confusable phone-

mic forms (see Section 4.3). This would potentially simplify experiments, since

the auditory confusability of entire words could be tested, instead of testing the

confusability of specific phones, which requires controlling for context. A loss

function based on probabilities also has some technical advantages over weigh-

ted string edit distance that will be discussed in Section 5.5. However, there does

not appear to be much empirical work that could be used to derive a loss function

in terms of confusion probabilities.

In the rest of this chapter and throughout Chapter 3 we therefore assume that

symbol error is defined as ordinary Levenshtein distance, which simplifies the

presentation of examples in the next section. It should be clear, though, that for

letter-to-sound applications a more realistic assignment of edit costs based on

some notion of phonetic similarity should be preferred.

2.4 Interconnections

As there are major conceptual differences between the loss functions introduced

in the previous sections, one should suspect that minimizing any one loss func-

tion will generally not result in minimization of the other metrics. We illustrate

this point for pairs of the major loss functions discussed previously.

40

Orthography s l a u g h t e r h o u s e PrER SymER StrER
Reference alignment s l O - - - t - Ä h aU< - s -
Classifier #1 predictions s l - O - - t Ä - h - aU< s - 6/14 0/8 0/1
Classifier #2 predictions - - - s l O - t - - Ä h aU< s 14/14 0/8 0/1

Figure 2.4: Examples of predicted pronunciations, contrasting prediction error
rate and symbol error rate.

2.4.1 Prediction Error vs. Symbol Error

As mentioned before, prediction error rate is only meaningful in approaches that

use pre-aligned evaluation data. Symbol error rate – in our case, phoneme error

rate – on the other hand is based on the minimal number of edit operations (in-

sertions, deletions and substitutions) necessary to transform the predicted string

into the reference string, ignoring the reference alignment. An optimal sequence

of edit operations defines an alignment between the predicted string of phonemes

(and hence the string of letters used for prediction) and the reference string, and

this alignment may differ from the reference alignment.

It is easy to see that one can keep symbol error low and make the prediction er-

ror arbitrary large in theory. Consider the word 〈slaughterhouse〉 and its reference

pronunciation /slOtÄhaU< s/. A reference alignment, obtained by concatenating the

alignments for 〈slaughter〉 and 〈house〉 from the NETtalk data set, is shown in Fig-

ure 2.4.

Now suppose that a classifier, call it Classifier #1, has been learned on the

basis of an aligned data set and that it makes reasonable predictions on input

〈slaughterhouse〉 shown on the third line of Figure 2.4. The prediction error rate of

41

Classifier #1 is 6/14 ≈ 0.43, whereas the phoneme error rate is 0/8 = 0. The point

is that the classifier implicitly produces an alignment differing from the reference

standard and is penalized for that, even though the differences do not matter in

terms of phoneme error or word error.

A worse case arises for another hypothetical classifier, call it Classifier #2,

which predicts the wildly unreasonable, though theoretically possible, results on

the last line of Figure 2.4. Every single prediction of Classifier #2 turns out to be

wrong compared with the reference alignment. Its prediction error rate is there-

fore 14/14 = 1, while the phoneme error rate is still 0, the same as for Classifier #1.

These examples illustrate that prediction error rate can distinguish between

different classification results that are indistinguishable on the basis of symbol

error rate. It is not clear, however, that the power to make such distinctions is

necessary or desirable. There don’t seem to be many practical applications that

would make it necessary to know the exact alignment that gave rise to a particular

output string; letter-to-phoneme conversion is arguably not one of them. In other

words, using prediction error rate may result in spurious distinctions, which, com-

bined with the fact that it only applies in settings involving aligned data, makes

this a performance measure of very limited utility.

We now exhibit two exemplary situations where minimizing symbol error rate

does not necessarily minimize prediction error rate, and conversely.

The first situation arises when ties among fairly arbitrary alignment decisions

are broken non-uniformly. We again use the aligned NETtalk data set [Sejnowski,

1988] as a source of examples. Consider the words 〈neural〉 and 〈rheumatic〉. In

both instances the letters 〈eu〉 are pronounced /U/, but the alignments differ; see

the reference alignments displayed in Figure 2.5.

42

Reference Predicted PrE SymE
〈amateur〉 /æm@t--Ä/ /æmæt--ô/ 2 2
〈neural〉 /nU-ô-l

"
/ /n--ôæl

"
/ 2 2

〈rheumatic〉 /ô--UmætIk/ /ô---mætIk/ 1 1

Totals 5 5

Figure 2.5: Example data set with inconsistent alignments. The predicted pronun-
ciations were produced by majority classifiers and minimize prediction error.

Assume a classification setting in which phonemes, including the pseudo-null

phoneme /-/, are predicted for each letter position in a word without using any

context, i. e., as a function of individual letters only. The learning task can be de-

composed into inference of up to 26 independent classifiers, one for each letter

of the alphabet. Since no other information is available, for each of these inde-

pendent classifiers the optimal choice that minimizes classification error is a sim-

ple majority classifier that predicts the phoneme most frequently associated with

the given letter. In the case of Figure 2.5 the choices are unique, as can be seen

from Figure 2.6. We can obtain the total prediction error from the same figure

by adding up all occurrence counts of the minority phonemes. The predictions

of the majority classifiers are displayed in Figure 2.5, together with the number

of prediction errors (column PrE) and phoneme/symbol errors (column SymE).

Overall prediction error rate is 5/22 ≈ 0.23, and symbol error rate is 5/16 ≈ 0.31.

This symbol error rate is not optimal for the present classification setting, al-

though the prediction error rate is in fact optimal. Because the choice of alignment

43

Letter Phonemes and occurrence counts

〈a〉 /æ/ 2, /@/ 1, /-/ 1
〈c〉 /k/ 1
〈e〉 /-/ 2, /u/ 1
〈h〉 /-/ 1
〈i〉 /I/ 1
〈l〉 /l

"
/ 1

〈m〉 /m/ 2
〈n〉 /n/ 1
〈r〉 /ô/ 2, /Ä/ 1
〈t〉 /t/ 2
〈u〉 /-/ 2, /u/ 1

Figure 2.6: Letters and corresponding phonemes among the data in Figure 2.5.

of /U/ with one of the letters 〈eu〉 is different for 〈neural〉 and 〈rheumatic〉, the pho-

neme most frequently associated with the letter 〈e〉 is /-/. If the reference align-

ment had been more consistent, we might have found that the phoneme /U/ was

the best prediction for the letter 〈e〉. The consequences of predicting /U/ instead

of /-/ for the letter 〈e〉 are shown in Figure 2.7. This slightly modified mapping

is one that minimizes symbol error (and, incidentally, also string error), which is

less sensitive to spurious alignment distinctions than prediction error. Compared

with Figure 2.5, the prediction error rate of 6/22 ≈ 0.27 is higher, but the symbol

error rate of 4/16 = 0.25 is lower, and in fact optimal.

The second example of differing results for minimizing prediction error vs.

symbol error involves the special multi-phoneme symbols in the NETtalk data set.

The use of multi-phoneme symbols is not limited to the NETtalk data set; other

44

Reference Predicted PrE SymE
〈amateur〉 /æm@t--Ä/ /æmætU-ô/ 3 3
〈neural〉 /nU-ô-l

"
/ /nU-ôæl

"
/ 1 1

〈rheumatic〉 /ô--UmætIk/ /ô-U-mætIk/ 2 0

Totals 6 4

Figure 2.7: Example data set with non-uniformly broken ties. The predicted pro-
nunciations minimize symbol error.

approaches also use a fixed, language-specific inventory of multi-phoneme sym-

bols [Minker, 1996], or generate multi-phoneme symbols automatically as needed

[Sproat, 2000]. Recall that in the NETtalk transcription system the symbol X rep-

resents the phoneme sequence /ks/, and the symbols K stands for the phoneme

sequence /kS/. Consider the set of words plus reference alignments shown in Fig-

ure 2.8. For each word, the reference transcription and predicted transcription

are shown. Since prediction error (PrE) is defined in terms of transcription sym-

bols, it appears on the same line as the transcription string. Underneath each

transcription string is the corresponding string of phonemes, on the same line as

the values for symbol error (SymE) and string error (StrE), which are defined in

terms of phonemes rather than transcription symbols.

Assume the same classification scenario as before: for each letter predict a pho-

neme (possibly null) without reference to any features other than the identity of

the letter. Figure 2.9 shows the phoneme symbols (using NETtalk transcription)

associated with each letter, including occurrence counts. In order to minimize

prediction error, we have to choose for each letter the symbol most frequently

associated with it. The choices are unique. The predictions under the majority

45

Reference Predicted PrE SymE StrE
〈flexure〉 flEK-R- fl-z-r- 3

/flEkSÄ/ /flzô/ 4 1
〈inflexion〉 InflEK-xn Infl-zIxn 3

/InflEkS@n/ /InflzI@n/ 3 1
〈lynx〉 lIGX lAnz 3

/lINks/ /laI<nz/ 4 1
〈prefix〉 prifIX fr-fIz 3

/pôifIks/ /fôfIz/ 4 1
〈xenophobe〉 zEnxf-ob- z-nxf-xb- 2

/zEn@fob/ /zn@f@b/ 2 1
〈xerophyte〉 zIrxf-At- z-rxf-At- 1

/zIô@faI<t/ /zô@faI<t/ 1 1
〈xylophone〉 zAlxf-on- zAlxf-xn- 1

/zaI<l@fon/ /zaI<l@f@n/ 1 1

Totals 16 19 7

Figure 2.8: Example data set with multi-phoneme symbols. The predicted pro-
nunciations were produced by majority classifiers and minimize prediction error.

classifiers are shown in Figure 2.8. The column labeled PrE shows the absolute

number of prediction errors, column SymE shows symbol errors, and column StrE

string errors. The overall prediction error rate is 16/53 ≈ 0.30, the symbol (pho-

neme) error rate is 19/48 ≈ 0.40, and the string (word) error rate is 7/7 = 1.

Let’s take another look at the phoneme symbols corresponding to the letter

〈x〉 shown in Figure 2.9. The symbol z, which stands for the phoneme /z/, is

the symbol most frequently associated with the letter 〈x〉 in this biased sample,

but the runners-up K and X are almost as frequent. Crucially, if we look at the

phoneme sequences that K and X represent, namely /kS/ and /ks/, we see that the

phoneme /k/ occurs a total of four times in the pronunciation associated with 〈x〉.

46

Letter Phonemes and occurrence counts

〈b〉 b 1
〈e〉 - 4, E 3, i 1, I 1
〈f〉 f 3
〈h〉 - 3
〈i〉 I 2, - 1
〈l〉 l 4
〈n〉 n 4, G 1
〈o〉 x 4, o 2
〈p〉 f 3, p 1
〈r〉 r 2, R 1
〈t〉 t 1
〈u〉 - 1
〈x〉 z 3, K 2, X 2
〈y〉 A 2, I 1

Figure 2.9: Letters and corresponding phonemes among the data in Figure 2.8.

If phoneme error is measured as Levenshtein distance with uniform costs for all

insertions, deletions and substitutions, we must choose /k/ as the pronunciation

of 〈x〉 in order to minimize symbol (phoneme) error.

The consequences of this change appear in Figure 2.10. The only difference

compared with Figure 2.8 is that the prediction for 〈x〉 is now k. This increases

the absolute number of prediction errors by three, since now all occurrences of

the letter 〈x〉 are sources of errors, whereas previously the symbol z was correctly

predicted in three cases. The overall prediction error rate is 19/53 ≈ 0.36. On

the other hand, the absolute number of insertions, deletions and substitutions of

phonemes was decreased by one: previously, the prediction of /z/ where /ks/ or

/kS/ were expected resulted in four substitutions and four deletions; the current

prediction of /k/ still requires four deletions where /ks/ or /kS/ were expected,

47

Reference Predicted PrE SymE StrE
〈flexure〉 flEK-R- fl-k-r- 3

/flEkSÄ/ /flkô/ 3 1
〈inflexion〉 InflEK-xn Infl-kIxn 3

/InflEkS@n/ /InflkI@n/ 2 1
〈lynx〉 lIGX lAnk 3

/lINks/ /laI<nk/ 3 1
〈prefix〉 prifIX fr-fIk 3

/pôifIks/ /fôfIk/ 3 1
〈xenophobe〉 zEnxf-ob- k-nxf-xb- 3

/zEn@fob/ /kn@f@b/ 3 1
〈xerophyte〉 zIrxf-At- k-rxf-At- 2

/zIô@faI<t/ /kô@faI<t/ 2 1
〈xylophone〉 zAlxf-on- kAlxf-xn- 2

/zaI<l@fon/ /kaI<l@f@n/ 2 1

Totals 19 18 7

Figure 2.10: Example data set with multi-phoneme symbols. The predicted pro-
nunciations minimize symbol error.

but only three substitutions when the reference pronunciation is /z/. The overall

symbol (phoneme) error rate is 18/48 ≈ 0.38, and the overall string (word) error

rate is unchanged at 7/7 = 1 as in the previous example.

Incidentally, the optimal string error rate is 5/7 ≈ 0.71, since it is possible for a

classifier to completely match the pronunciation of two words. Since by assump-

tion the classifier in this toy example cannot take any letter context into account,

it is difficult or impossible for it to correctly predict the pronunciation of words

in which a given letter occurs more than once with different pronunciations. For

example, the correct pronunciation of 〈flexure〉 could only be captured by assum-

ing that both occurrences of the letter 〈e〉 are “silent”, that 〈x〉 maps to /e/, and

48

that 〈u〉 is pronounced /kS/. However, such a mapping would not be able to ac-

count for the pronunciation of any of the other words. Similarly unreasonable

assumptions would have to be made to correctly capture the pronunciation of

〈xylophone〉 due to the two occurrences of 〈o〉. The words 〈inflexion〉, 〈xenophobe〉

and 〈xerophyte〉 cannot be accommodated at all by this simple model, because of

multiple occurrences of 〈i〉, 〈o〉 and/or 〈e〉.

Since the five words discussed so fare are all very hard or impossible to fit into

the current classification model without automatically resulting in errors, we can

ignore them completely if the goal is to minimize the number of words whose

pronunciations are mispredicted. Among the remaining two words, 〈lynx〉 and

〈prefix〉, the only letter occurring more than once is 〈x〉, but its pronunciation is

the same at both occurrences. We can therefore construct a mapping that will

correctly predict the pronunciations of those two words. The consequences of

such a mapping are shown in Figure 2.11. Notice in particular that we had to

choose minority symbols as the pronunciations associated with the letters 〈e〉, 〈n〉,

〈p〉, 〈x〉, and 〈y〉. The overall string (word) error rate of 5/7 ≈ 0.71 is optimal, but

the prediction error rate of 26/53 ≈ 0.49 as well as the symbol (phoneme) error

rate of 29/48 ≈ 0.60 are much higher than before. We will have more to say about

minimizing string error rate in the next two sections.

The discussion of the two example scenarios demonstrated that minimizing

prediction error is generally independent from minimizing symbol error. How-

ever, there are situations where the two notions converge. For example, if the

number of letters in a word equals the number of phonemes, and if no multi-

phoneme symbols are used, then prediction error and symbol error coincide for

that word, since any mispredicted phoneme will count as one substitution and

there are no insertions or deletions. Also, if we managed to reduce prediction

49

Reference Predicted PrE SymE StrE
〈flexure〉 flEK-R- fliX-ri 4

/flEkSÄ/ /fliksôi/ 4 1
〈inflexion〉 InflEK-xn IGfliXIxG 5

/InflEkS@n/ /INfliksI@N/ 5 1
〈lynx〉 lIGX lIGX 0

/lINks/ /lINks/ 0 0
〈prefix〉 prifIX prifIX 0

/pôifIks/ /pôifIks/ 0 0
〈xenophobe〉 zEnxf-ob- XiGxp-xbi 6

/zEn@fob/ /ksiN@p@bi/ 7 1
〈xerophyte〉 zIrxf-At- Xirxp-Iti 5

/zIô@faI<t/ /ksiô@pIti/ 6 1
〈xylophone〉 zAlxf-on- XIlxp-xGi 6

/zaI<l@fon/ /ksIl@p@Ni/ 7 1

Totals 26 29 5

Figure 2.11: Example data set with multi-phoneme symbols. The predicted pro-
nunciations minimize string error.

error to its optimum of zero, then all other measures of error would have to be at

their optima, including a symbol error of identically zero.

Prediction error is sensitive to differences in alignment, and we have seen an

example where every single prediction by a classifier was wrong, yet the symbol

error rate was zero. We explore related situations in the next section.

2.4.2 Prediction Error vs. String Error

In the previous scenario involving multi-phoneme symbols we had already seen

an example where minimizing prediction error conflicts with minimizing string

50

Reference Predicted PrE StrE
〈hat〉 /hæt/ /hæt/ 0 0
〈hit〉 /hIt/ /hIt/ 0 0
〈hut〉 /h2t/ /h2t/ 0 0
〈kin〉 /kIn/ /kIN/ 1 1
〈thank〉 /T-æNk/ /thæNk/ 2 1
〈think〉 /T-INk/ /thINk/ 2 1

Totals 5 3

Figure 2.12: Example data set. The predicted pronunciations were produced by
majority classifiers and minimize prediction error.

error. The same conflict can be seen on a more realistic sample, again taken from

the NETtalk data set, that does not involve any multi-phoneme symbols.

The main point, illustrated in Figure 2.12 and Figure 2.13, is this: if the goal is

to minimize string error, one need not worry about words that cannot be accom-

modated by the classification model; the string error criterion cannot distinguish

between predicted pronunciations with one minor flaw on the one hand, and com-

plete gibberish on the other. So a good strategy for minimizing string error is to

identify and eliminate hopeless cases.

We assume the same classification setting as before: predict phonemes (possi-

bly null) on the basis of isolated letters. The majority classifications, which mini-

mize prediction error, can be seen in Figure 2.12. The key point is that 〈n〉 must

be mapped to /N/, because that combination occurs twice, not to /n/, which oc-

curs only once. However, all the words that contain 〈n〉 paired with /N/, namely

〈thank〉 and 〈think〉, are flawed beyond repair. In order to minimize string error,

we can trade off a higher misprediction penalty on those two words for a lower

51

Reference Predicted PrE StrE
〈hat〉 /hæt/ /hæt/ 0 0
〈hit〉 /hIt/ /hIt/ 0 0
〈hut〉 /h2t/ /h2t/ 0 0
〈kin〉 /kIn/ /kIn/ 0 0
〈thank〉 /T-æNk/ /thænk/ 3 1
〈think〉 /T-INk/ /thInk/ 3 1

Totals 6 2

Figure 2.13: Example data set. The predicted pronunciations minimize string
error.

string error, because it is possible to correctly predict the pronunciation of 〈kin〉 if

the letter 〈n〉 is mapped to the minority symbol /n/ (we also see that the sample

is biased in this regard, since overall /n/ would be more frequent than /N/). The

predicted pronunciations are shown in Figure 2.13. It is easy to see that a string

error rate of 2/6 is indeed optimal: 〈t〉must be pronounced as /t/, since any other

choice would eliminate three words; for the same reason 〈h〉must be pronounced

as /h/. But that renders 〈thank〉 and 〈think〉 hopeless, and so these two words

have no further role to play. Only 〈kin〉 remains, and it causes no additional er-

rors.

In the discussion of Figure 2.4 above, we had noted that prediction error is

sensitive to spurious distinctions. Every prediction of a hypothetical mapping,

which we had called Classifier #2, was wrong, yet the concatenation of all indi-

vidual prediction results matched the reference pronunciation. For convenience,

this is repeated in Figure 2.14: the column labeled PrER shows prediction error

rates, StrER string error rates, and SymER symbol error rates.

52

Orthography s l a u g h t e r h o u s e PrER SymER StrER
Reference alignment s l O - - - t - Ä h aU< - s -
Classifier #2 predictions - - - s l O - t - - Ä h aU< s 14/14 0/8 0/1
Classifier #3 predictions s l O - - - t - Ä h aU< - z - 1/14 1/8 1/1
Classifier #4 predictions t o t l

"
2 t Ä Ã I b @ ô I S 14/14 12/8 1/1

Figure 2.14: Examples of predicted pronunciations, contrasting prediction error
rate and string error rate.

Whereas prediction error rate is too sensitive to differences in the predicted

pronunciation from the reference pronunciation, string error rate is too oblivious.

Consider another hypothetical classifier, Classifier #3, whose output is shown in

Figure 2.14. Its prediction is slightly flawed, since the last segment was incorrectly

predicted to be a /z/ instead of an /s/. Incidentally, this would be correct if the

word was 〈house〉 and used as verb, but it does not generalize to 〈slaughterhouse〉.

Prediction error rate is only 1/14 ≈ 0.07, but word error rate is 1 because the

predicted pronunciation is wrong. Compare this with the output of Classifier #4,

which is total utter gibberish. String error rate cannot distinguish between the

massive problems of Classifier #4 and the minor flaw of Classifier #3, since neither

prediction matches the reference pronunciation. On the other hand, Classifier #4

is equivalent to Classifier #2 in terms of prediction error rate, but the pronuncia-

tions they predict are radically different.

In practice, prediction error and string error are correlated. If prediction er-

rors occur independently of one another, and if spurious prediction errors due to

alignment differences are rare, then string (word) error rate can be estimated as

53

1 − (1 − r)n where r is the prediction error rate (so 1 − r is prediction accuracy;

see also Section 2.5), and n is the average number of letters in a word.

2.4.3 Symbol Error vs. String Error

The previous discussion surrounding Figure 2.12 and Figure 2.13 exhibited a con-

flict between minimizing prediction error and minimizing string error. A similar

conflict exists between minimizing symbol error and minimizing string error, and

the exact same examples can be used to illustrate this.

An important property shared by symbol error and string error is their uni-

versal applicability. Unlike prediction error, which only applies when the overall

task is decomposed into separate classification problems, symbol error and string

error can be computed for any method that predicts pronunciations.

Unfortunately, many authors do not report symbol accuracy (or some varia-

tion thereof) for their approaches. Prediction error/accuracy is often used with-

out being properly identified as such. For example, the seminal NETtalk journal

paper talks about ‘[t]he percentage of correct phonemes’ [Sejnowski and Rosen-

berg, 1987, p. 153], but it is clear that what is being measured is prediction accu-

racy of transcription symbols. In the NETtalk transcription system, a transcription

symbol may correspond to zero, one, or two phonemes, and therefore speaking

of the ‘percentage of correct phonemes’ is somewhat misleading.

The desire for a universally applicable evaluation metric prompted Damper

et al. [1999] to recommend string (word) accuracy as the main criterion for com-

paring different approaches and systems. While Damper et al. [1999, p. 164] in-

dicate that they ‘generally favour [. . .] string-edit distance’, they (correctly) char-

acterize word accuracy as a simple metric that is ‘more stringent and sensitive

54

than symbols correct scores’. Word accuracy is also the ‘ultimate measure of per-

formance’ for Galescu and Allen [2001]. However, as the previous discussions

have shown, word accuracy (resp. word error rate) is too fussy and conservative:

by treating all errors alike, it cannot distinguish between minor flaws and major

problems in the output of different schemes or classifiers.

We therefore recommend against using either string (word) error or prediction

error as the sole universal evaluation metric. As Figure 2.14 illustrates, symbol

(phoneme) error rate based on (some version of) string edit distance is preferable,

because it is able to make more distinctions than string error without being sen-

sitive to spurious alignment issues. Because symbol error rate is applicable in all

situations, we recommend that it be used as the main evaluation metric.

2.5 Accuracy, Optimization and Approximations

Sometimes it makes sense to talk about accuracy instead of error rate. If the error

rate of a classifier is r, its accuracy is defined to be 1− r.

Ideally, whatever metric one decides to use for evaluation should also be

(a part of) the objective function that is optimized during model training. In

practice this is often not the case. For example, Damper et al. [1999] compare

several ‘automatic-phenomization [sic] techniques’ using string error rate as the

main evaluation criterion. A NETtalk-like system is included in their comparison,

which was trained on an aligned dictionary. However, the objective minimized

during training of this system is prediction error, which prefers different models

than string error. Even if a globally optimal model that minimizes prediction er-

ror could be found during training, there is no guarantee that this model will be

optimal when evaluating based on a different criterion.

55

When using any of the above evaluation metrics as (part of) an optimization

objective, we have a choice: we could either minimize error rate, or maximize ac-

curacy. If we can find globally optimal solutions, this amounts to the same thing.

But if we consider approximations to within relative bounds, the two optimiza-

tion problems are generally different [Ausiello et al., 1999; Hromkovič, 2001].

Suppose that the true global optimum for a 1,000 word problem is a map-

ping which correctly predicts the pronunciation of 900 words and makes one or

more mistakes on 100 words. Further assume that we have two approximation

algorithms with an approximation ratio of 1.2, one of which is a maximization

algorithm and the other one a minimization algorithm. If we use the maximiza-

tion algorithm to maximize string (word) accuracy, then the 1.2 approximation

ratio means that the algorithm is guaranteed to find a feasible solution that re-

sults in the correct pronunciation of at least 900/1.2 = 750 words. In the worst

case, this means an empirical word error rate of 25%. On the other hand, if we

minimize word error rate with the 1.2-approximate minimization algorithm, we

are guaranteed to find a solution that results in the incorrect pronunciation of at

most 100× 1.2 = 120 words. The worst-case word error rate is then only 12%.

2.6 Conclusion

This chapter reviewed the most commonly used evaluation metrics for letter-to-

sound rules. Prediction error is typically used by approaches based on aligned

data. However, it is only applicable for aligned data, and because it takes align-

ments into account, it is sensitive to spurious alignment differences. Both prop-

erties are undesirable, and prediction error should not be used as a general eval-

uation criterion. By contrast, string error is universally applicable and oblivious

56

to alignment information. It is, however, also oblivious to subtle differences be-

tween predicted strings and reference strings, since it is a 0-1-loss function that

can only distinguish between perfectly correct predictions vs. flawed predictions.

While the boundary could be redrawn so that perfectly correct and slightly flawed

predictions incur a loss of zero and everything else a loss of one, this still does not

change the fact that string error provides only a single bit of information. String

error may exaggerate the differences between classifiers, for example, if one clas-

sifier makes many perfect predictions, and the other is not far off but its predic-

tions contain minor mistakes. At the same time, important differences between

classifiers may be obscured by string error, like when one classifier’s predictions

contain subtle flaws and the other one’s major blunders, since both would count

as equally wrong. Comparisons based on string error, such as Damper et al.’s

[1999], may therefore not be very trustworthy. While Damper et al. [1999] are

right that string error rate is a very ‘stringent’ criterion (no pun intended on their

part), it is precisely because of this very quality that string error rate and string

accuracy should not be used.

Instead, we recommend the use of some variant of what we have referred to

as symbol error. Called word error (rate) in speech recognition, symbol error is

widely used in that area. When symbol error is defined as ordinary Levenshtein

edit distance, it can be used to calculate string error, since a string is perfectly cor-

rect iff its edit distance to the reference string is zero. In other words, there is a

forgetful mapping that converts edit distance into string error, returning a string

error of zero for an edit distance of zero, and a string error of one otherwise. De-

spite this, we saw that optimizing edit distance may lead to different results than

optimizing string error. Because edit distance makes more distinctions than string

error, it provides more information about the differences between classifiers, and

57

its use should therefore be preferred over string error. However, for technical rea-

sons that will be discussed in Section 5.5, Levenshtein distance may sometimes

be a bit cumbersome to work with, in which case it will be better to define symbol

error in terms of the probability of one string being mistaken for another.

The key result of this chapter is the demonstration that the three different eval-

uation measures discussed here lead to distinct optimization problems. Which

metric to use as an optimization objective or loss function during model training

is an important question. Although the choice may depend on technical consid-

erations discussed in the following chapters, ideally it should match the measure

used for empirical evaluation. This is a general concern that goes beyond the par-

ticular task of learning and evaluating letter-to-sound mappings discussed here.

Similar issues arise in machine learning of information extraction components,

where it is often the case that some variant of prediction error specific to a par-

ticular approach is minimized during model training, whereas the quality of the

trained components is measured in terms of (the harmonic mean of) precision

and recall. We suspect that these different criteria are also pulling in different

directions, just like the tug-of-war described in this chapter.

58

CHAPTER 3

LEARNING DETERMINISTIC TRANSDUCERS

3.1 Introduction

Much of the traditional literature on learning letter-to-sound rules has focused,

often implicitly, on deterministic finite transducers. Deterministic transducers

compute functions from a formal language L1 ⊆ Σ∗ to another formal language

L2 ⊆ Γ∗, and for finite transducers these languages are regular. For example L1

might be the set of French orthographic words and L2 the set of valid French

phoneme strings. We will omit all references to L1 and L2 and generally speak of

partial functions from Σ∗ to Γ∗, where Σ would, for example, be the set of letters

of the Roman alphabet, and Γ a set of transcription symbols or phoneme symbols.

Learning letter-to-sound rules could be viewed directly as learning certain

kinds of deterministic finite transducers. The so-called subsequential transducers

are a very general class of deterministic finite transducers, and this class can be

learned (in a specific sense) from positive data, which is the topic of Section 3.2.

Most other machine learning approaches have treated the overall learning task

as classifier learning (under a very different definition of learning), by reducing

the overall prediction task to a classification task. Section 3.3 shows that the map-

pings computed by these approaches fall within a restrictive class of deterministic

59

finite transductions, so-called local transductions. A local transductions is in turn

equivalent to a deterministic preprocessing step followed by a very simple map-

ping characterized completely by how it maps symbols in Σ to strings in Γ∗. This

is the topic of Section 3.4. The goal is to restrict the class of mappings that have to

be learned, so that one can concentrate on the essence of the learning problem. In

Section 3.5 the complexity of several restricted learning problems is investigated,

providing some formal backing for the main point Chapter 2 that different loss

functions give rise to very different learning problems.1

3.2 Subsequential Transducers

Oncina et al. [1993] presented an algorithm (OSTIA) that can infer subsequential

transducers from positive samples, where inference is understood as identifica-

tion in the limit [Gold, 1967]. The limit identification paradigm features a learner

that receives an infinite stream of samples, and for each sample it reads it out-

puts a hypothesis consistent with all samples seen up to that point. The learner

identifies the target concept that generated the samples in the limit, if the stream

of hypotheses it generates has the target concept as a fixed point. This view of

learning has many unrealistic aspects, some of which will be discussed in terms

of the specific learning algorithm OSTIA.

Subsequential transducers are like sequential transducers, or (deterministic)

generalized sequential machines [Eilenberg, 1974, ch. XI], but have designated

final states with an associated string output function. OSTIA was subsequently

applied to various natural language learning tasks by some of the the authors

of the original OSTIA paper and their colleagues. One of the first attempts (and

1Some of the material presented in this chapter appears in Jansche 2003, which is copyright
c© 2003 by the present author.

60

apparently the only one so far) to use OSTIA for phonemic modeling (letter to

sound rules, post-lexical rules, pronunciation modeling) is the work of Gildea

and Jurafsky [1994, 1996].

Some important characteristics of OSTIA can be summarized as follows:

Brittleness OSTIA cannot deal with noisy data containing imperfect generaliza-

tions or genuine exceptions. If there is any evidence in the training samples

that the resulting machine cannot be subsequential, the learning algorithm

will abort.

Because a typical pronunciation dictionary will contain homographs, which

share a common orthographic form but differ in pronunciation, for exam-

ple 〈associate〉 /@sosi@t/ (noun) vs. /@sosiet/ (verb), one cannot use such a

pronunciation dictionary directly as training data for OSTIA. Even if ho-

mographs were removed, there is no guarantee that OSTIA will terminate

normally, since there can easily be less obvious cues for the non-subsequen-

tiality of the data.

Out-of-class behavior On the other hand, there are situations where the train-

ing data are actually generated from a non-subsequential transducer, but

the learning algorithm fails to realize that, in the sense that it would fail to

identify that relation in the limit. Limit-identification does not require that

the algorithm terminates once it has seen a characteristic sample of the tar-

get relation, so it could consume more and more training data without ever

converging to a fixed point.

Many definitions of learning, including limit identification and classical PAC

learning, assume that the target concept falls within the concept class that

the learner can identify. In practice, this assumption is often unrealistic, and

61

it is often sufficient that a learner finds the best hypothesis for a set of obser-

vations, regardless of whether the true concept falls within the concept class

of the learner. Such a learner is usually called agnostic, because it makes no

assumptions about the data it sees.

The previous point already demonstrated that OSTIA is not agnostic, since it

terminates abnormally on some out-of-class samples. (Open problem: Can

there be an agnostic version of OSTIA? If so, should it be called OSTIA-

GNC?) For other out-of-class samples OSTIA is more reasonable. Consider

the following set of samples:

a a

aa ba

aaa aba

aaaa baba

Suppose these data were generated by the nondeterministic (and hence

non-sequential) transducer shown in Figure 3.1. This is not a completely

artificial example, as transductions of this form do actually arise in natural

phonological systems [Jansche, 1998]. Observe that the transducer in Fig-

ure 3.1 is unambiguous, and that the transduction it computes is therefore a

rational function [see for example Roche and Schabes, 1997b, sec. 1.3.6 and

references cited therein], in fact a total function f : {a}∗ → {a, b}∗ defined by

f (a2n) = (ba)n, and f (a2n+1) = a(ba)n for all n ∈ N. Crucially, any sample

of the behavior of f , i. e. a finite subset of the set {〈x, y〉 | f (x) = y} (called

the graph of f ; see Definition 3.1), can be represented by a subsequential

transducer.

62

a:a

a:b

a:b

a:a

Figure 3.1: An unambiguous but nondeterministic transducer realizing the ratio-
nal function {〈a, a〉, 〈ε, ε〉}{〈aa, ba〉}∗.

As more and longer strings are fed to OSTIA, the automaton it learns will

grow accordingly, but the learning procedure will never converge, because

at each point only a finite amount of data has been seen and there clearly

exist subsequential transducers consistent with those data. For any non-

trivial sample, the transducer more or less memorizes by rote all strings up

to the longest string in the training sample, and any generalizations beyond

the longest string will be wrong.

In other words, we have an example of an out-of-class target function for

which OSTIA will neither converge (in the limit) nor discover the fact that the

target concept does not fall within the learnable concept class. Although it

will terminate normally on any finite set of samples, it returns a hypothesis

that is guaranteed to be incorrect.

Partial mapping There is no guarantee that OSTIA always finds a subsequential

transducer which accepts all possible input strings. Determining whether

63

this is the case is easy: check if the complement (with respect to Σ∗) of the

first projection of the transducer is empty. However, it is not clear what

to do if the function computed by the inferred transducer is not total: we

still need to find a way to determine the pronunciations of words that the

transducer rejects, so we are back to where we started.

Wrong hypothesis space In practice, OSTIA tends to converge slowly and the

generalizations it obtains seem unnatural [Gildea and Jurafsky, 1994, 1996].

(This may very well be a consequence of the first two points discussed here.)

Gildea and Jurafsky [1994] propose ways to add bias in the form of con-

straints on the alignment of symbols on the input and output tape. This

seems entirely justified for phonemic modeling, but the fact that it was nec-

essary to add this bias suggests that OSTIA was not the right tool to use in

the first place, since it does not make use of the locality of information in-

herent in many phonemic generalizations (see the discussion of local letter

context in Section 2.3.2).

Data requirements On the positive side, the input to OSTIA is a set of pairs of

input/output strings (training samples). Unlike in many other approaches,

there is no requirement that the two strings in a sample must be of equal

length (aligned).

In sum, the OSTIA algorithm has many properties that make it unsuitable for

the task of learning letter-to-sound transducers. If one is only interested in “off-

the-shelf” solutions, OSTIA should not be the first choice, and probably not even

the second. However, a desirable property of OSTIA is the fact that it works

with unaligned data. Still, we prefer algorithms that are robust to irregulari-

ties (“noise”) in their training data, degrade gracefully on out-of-class input, and

64

whose outputs are total functions of a restricted class appropriate for the letter-to-

sound task. The traditional approaches discussed in the next section are diamet-

rically opposed in terms of the properties discussed here, as they avoid many of

the shortcomings of OSTIA, but require aligned training data. An ideal learning

algorithm should retain the desirable characteristics of the traditional approaches

and of OSTIA. The algorithms in Chapter 5 arguably come closest to that ideal.

3.3 Strictly Local Transducers

The approach to learning letter-to-sound mappings used by NETtalk [Sejnowski

and Rosenberg, 1987] has become well known, perhaps partly due to the attention

paid to NETtalk within the context of the so-called symbolism vs. connectionism

debate. The basic technique, which we had briefly touched on in Section 2.3.2,

did not originate with NETtalk; in fact, Sejnowski and Rosenberg [1987] refer to

prior work by Lucassen and Mercer [1984], and the general idea may have much

earlier origins.

The key aspect is the reduction of the transducer learning problem to a well

understood classifier learning problem. The fact that NETtalk employed artificial

neural network classifiers is at most of secondary interest here, though the choice

of classifier learner has sparked a separate, more focused debate [see for example

Stanfill and Waltz, 1986; Dietterich et al., 1995; Daelemans et al., 1999], distinct

from the connectionism debate. Many kinds of classifiers and classifier learners

have been used in the literature, including artificial neural networks [Sejnowski

and Rosenberg, 1987], memory-based learning [Stanfill and Waltz, 1986; Stanfill,

1987], rules [Hochberg et al., 1991; Fisher, 1999], and decision trees [Lucassen and

Mercer, 1984; Riley, 1991; Daelemans and van den Bosch, 1997; Jiang et al., 1997;

65

Black et al., 1998; Chotimongkol and Black, 2000; Jansche, 2001; Sproat, 2001].

In addition, closely related approaches have employed iterated version spaces

[Hamilton and Zhang, 1994], transformation-based learning [Huang et al., 1994;

Bouma, 2000], and Markov models [Minker, 1996], which have also been used

for the inverse task of phoneme-to-letter conversion [Rentzepopoulos et al., 1993;

Rentzepopoulos and Kokkinakis, 1996]. Eager learners that infer structurally sim-

ple classifiers, typically rules or decision trees, have received additional attention.

For example, decision trees can be compiled into finite state automata, either di-

rectly [Sproat and Riley, 1996] or indirectly [Sproat, 2001] by providing an imple-

mentation of an abstract data type for finite state machines [Mohri et al., 2000].

A common observation is that overly eager learners that aim to produce con-

cise descriptions are at a disadvantage. For example, Dietterich et al. [1995] and

Bakiri and Dietterich [1993, 2001] use the decision tree learner ID3 [Quinlan, 1986]

without pruning or early stopping. The IGTREE algorithm formulated and used

by Daelemans and van den Bosch [1997] explicitly eschews the use of a pruning

step. Later, Daelemans et al. [1999] argue that removing rare or exceptional in-

stances is generally harmful.

For classifier-based approaches two assumptions are required. First, letter

strings must be of the same length as the corresponding phoneme strings. Since

this is not normally the case for ordinary pronunciation dictionaries, one must

somehow transform the dictionary, for example by padding shorter strings or

contracting adjacent symbols into multi-symbol units in order to shorten longer

strings. The NETtalk data set (Section 2.2.2) is the end result of such a transforma-

tion. It satisfies the first requirement, namely in all of its entries the orthographic

form has the same length as its transcription. Second, we assume locality in the

sense that each output symbol (phoneme) can be predicted based on its aligned

66

input symbol (letter) plus a fixed amount of surrounding input context. The sec-

ond, more specific assumption (essentially a Markov assumption) is the topic of

the next subsection; the aligned data requirement is discussed after that in Sec-

tion 3.3.2.

3.3.1 Locality Assumption

Let us look again at the word 〈slaughterhouse〉 and its reference alignment from

Figure 2.4 or Figure 2.14. Suppose that each symbol of the reference alignment

can be predicted from the corresponding letter plus two letters of context on each

side. This means that we need to examine all substrings of length 5 and predict a

corresponding phoneme. Special treatment is required for the edges of the string.

To keep things simple, we pad the letter string on both sides with placeholder

symbols 〈-〉. The approach can then be visualized as sliding a fixed window of

size 5 across the padded letter string, outputting a transcription symbol at each

window position. This is shown in Figure 3.2; letters outside the window are

show in a lighter shade. This visualization happens to include the inessential

property that the fixed window slides smoothly (or at least as smoothly as is pos-

sible for a discrete object) across the input string from left to right, when in fact

any permutation of the window positions would do, as long as the outputs are

concatenated in the order corresponding to the window positions.

Each line of Figure 3.2 can be understood as pairing an input string of length 5

with an output symbol, in this case a symbol from Figure 2.2 or the symbol /-/. In

other words, under the assumption of locality the transduction from letter strings

to phoneme strings is completely characterized by a function from letter windows

67

--slaughterhouse-- /s/
--slaughterhouse-- /l/
--slaughterhouse-- /O/
--slaughterhouse-- /-/
--slaughterhouse-- /-/
--slaughterhouse-- /-/
--slaughterhouse-- /t/
--slaughterhouse-- /-/
--slaughterhouse-- /Ä/
--slaughterhouse-- /h/
--slaughterhouse-- /aU< /
--slaughterhouse-- /-/
--slaughterhouse-- /s/
--slaughterhouse-- /-/

Figure 3.2: An illustration of strict locality in terms of a symmetric sliding window
of size 5.

to transcription symbols. So the problem of inferring a local transducer from pos-

itive samples has been reduced to the problem of learning a function onto a finite

codomain, which is precisely a classifier learning problem. The training instances

for a supervised classifier learner then consist of the input (letter) windows, suit-

ably encoded, and the output (transcription) symbols are the class labels that we

want to predict.

For lack of a better term we shall speak of strictly k-local same-length transduc-

tions by analogy with the strictly k-testable languages [McNaughton and Papert,

68

1972]. Moreover, strictly k-testable languages are the languages accepted by scan-

ner (“sliding window”) automata (compiler implementers would speak of “peep-

hole optimizers”), and strictly k-local same-length transductions are transduc-

tions computed by scanner transducers (the sliding window process described

above).

The strictly 2-testable languages are often referred to as local languages [Mc-

Naughton and Papert, 1972]. A local language over a finite nonempty alphabet Σ

is characterized by its permissible prefixes P ⊆ Σ, suffixes S ⊆ Σ, and substrings

(factors) F ⊆ ΣΣ. Let G = ΣΣ− F, then the local language characterized by P, S,

and F can be defined by the following star-free expression, where the complement

A of a set A is taken with respect to Σ∗ (so in particular {} = Σ∗):

P{} ∩ {}S ∩ {} G {} (3.1)

This can be extended to transductions from an input alphabet Σ∗ to an output

alphabet Γ∗. First, we need a few auxiliary definitions:

Definition 3.1 (Graph of a relation). Given a relation R : A → B where A and B

are sets, define #(R), the graph of R, to be the set {〈a, b〉 ∈ (A × B) | aRb}. Note

that this includes the case of R being a function.

Definition 3.2 (Zip). Given two same-length sequences u = 〈u1, . . . , un〉 and w =

〈w1, . . . , wn〉 for some integer n ≥ 0, define zip(u, w) = 〈〈u1, w1〉, . . . , 〈un, wn〉〉.

Extend this operation to sets S ⊆
⋃

n∈N Σn × Γn and define zip(S) = {zip(u, w) |

〈u, w〉 ∈ S}.

Local transductions can now be defined in terms of two functions p : Σ → Γ

and f : Σ2 → Γ. Define the relation F : Σ2 → Γ2 for which uFw holds just in case

69

w = ab for some a ∈ Γ and b = f (u) (if f is defined for u). Let P = #(p) and G =

(Σ × Γ)2 − zip(#(F)), and define deterministic local same-length transductions

in terms of the following star-free expression (complements are now taken with

respect to (Σ× Γ)∗):

P{} ∩ {} G {} (3.2)

This definition is possible because same-length rational transductions are in many

respects equivalent to regular languages over symbol pairs, and so they are closed

under intersection and complementation. If the functions p and f are total, so is

the corresponding local transduction.

The generalizations to strictly k-testable languages, resp. strictly k-local trans-

ductions are straightforward.

Definition 3.3 (Strictly k-testable language). A strictly k-testable language for

fixed k > 0 over a finite alphabet Σ is characterized by a tuple 〈T, P, S, F〉 consist-

ing of permissible short strings T ∈
⋃k−2

n=0 Σn, prefixes and suffixes P, S ∈ Σk−1,

and substrings F ∈ Σk. Let G = Σk − F. The language is then defined as

T ∪
(

P{} ∩ {}S ∩ {} G {}
)

A language is said to be strictly locally testable if it is strictly k-testable for

some integer k. Our definition of strictly k-testable languages differs slightly from

various definitions given in the literature [McNaughton and Papert, 1972; Zalc-

stein, 1972; Garcı́a and Vidal, 1990; Yokomori and Kobayashi, 1998], but our class

of strictly locally testable languages includes all analogous classes defined in the

literature.

70

Definition 3.4 (Strictly k-local deterministic same-length transduction). For a

fixed k > 0, a strictly k-local deterministic same-length transduction over finite

alphabets Σ and Γ is characterized by a tuple 〈t, p, f 〉 where t ∈
⋃k−2

n=0(Γn)Σn
is

a length-preserving mapping from
⋃k−2

n=0 Σn into Γ∗; and where p is a function

Σk−1 → Γk−1; and f is a function Σk → Γ. Define F : Σk → Γk to be the relation

for which uFw holds just in case there exists a string v ∈ Γk−1 and a symbol

f (u) ∈ Γ such that w = va and a = f (u). Let T = zip(#(t)), P = zip(#(p)), and

G = (Σ× Γ)k − zip(#(F)). The transduction is then defined as

T ∪
(

P{} ∩ {} G {}
)

Strict locality plays an important role in many linguistic domains. It has of-

ten been argued that local letter context provides most of the information for

letter-to-sound conversion in languages like English [Lucassen and Mercer, 1984]

or French [Laporte, 1997]. In the analysis of lexical tone, the mapping between

underlying tones and surface tones is often local: for example the tone systems

studied by Gibbon [1987, 2001] are strictly local, but apparent exceptions can also

be found [Jansche, 1998]. The kinds of n-gram language models often used in

speech recognition are essentially stochastic versions of the strictly n-testable lan-

guages [Garcı́a and Vidal, 1990; Torres and Varona, 2001]. Word n-gram models

are clearly only an approximation to the syntax of natural languages [Brill et al.,

1998]; however, Kornai [1985] has argued that natural language syntax is non-

counting and regular, which would mean that formal descriptions would fall into

the class of star-free languages.

Phonological theory has long been concerned with strict locality in the sense

that segmental processes operate exclusively on adjacent segments. If we assume

71

that phonemic systems of natural languages are always regular, then strict locality

holds more or less trivially because of the morphic generator representation the-

orem for regular languages [Eilenberg, 1974, p. 27; Salomaa, 1981, p. 97f.], which

states that every regular language is the homomorphic image of a local language

under an alphabetic substitution. Put somewhat overly simply, as long as the al-

phabet can be enriched, every regular language can be represented by a local lan-

guage. However, enriching the inventory of phonemes is precisely the solution

often adopted. For example, a language may be described in terms of a process

whereby nasalization spreads transparently through laryngeals, e. g., all vowels

following a nasal consonant become nasalized if there is no intervening non-nasal

consonant, the exception being /h/ which is “transparent” to the spreading of

nasalization. The well-formed phoneme strings of such a natural language can-

not be described by a local formal language. However, if we introduce a new

symbol /h̃/ (for a “nasalized /h/”), then nasalization spreading is local if /h̃/ is

restricted to occur in nasalized contexts and /h/ occurs only in non-nasalized con-

texts. An alphabetic substitution – perhaps best thought of as a phoneme to phone

mapping – then maps both plain /h/ as well as nasalized /h̃/ to the phone [h]. In

other words, as long as the phoneme inventory can be enriched, all regular phone-

mic systems can be described in terms of local languages, and theoretical claims

about phonological locality are therefore empirically vacuous.

An important consequence of strict locality is that identical substrings of suffi-

cient length will be mapped to the same output no matter where they are located

within a larger string. This is desirable for codes because it limits the effects of

errors [Winograd, 1964], and is also useful for letter-to-sound transductions. Take

the example of 〈slaughterhouse〉 again and compare it with 〈laughterhouse〉. Both

are compound nouns containing the noun 〈house〉 as the second component, and

72

it receives the same pronunciation in both words, no matter what preceded it. On

the other hand, we need to make sure that we choose a large enough window,

otherwise the substring 〈laughter〉 would, incorrectly, be pronounced the same in

〈slaughterhouse〉 and 〈laughterhouse〉. Letter-to-sound applications use fairly large

window sizes: NETtalk [Sejnowski and Rosenberg, 1987] initially used a symmet-

ric seven-letter window, but Sejnowski [1988] mentions subsequent experiments

with 11 letters. Other researchers have experimented with window sizes up to 15

letters: Bakiri and Dietterich [2001] use symmetric windows with 7 to 15 letters

of context; Stanfill and Waltz [1986] employ an asymmetric window with four

letters preceding the central letter and ten letters following it.

The transductions commonly used in practice differ from the idealized defini-

tion of strictly k-local transductions given above. On that definition, a transducer

with k = 15 would treat words of length 13 or less specially, which would af-

fect more than 99% of the NETtalk data set, whose average word length is 7.3

letters. In practice, if the window has l letters of context preceding the central let-

ter and r letters of context following it, the input string is padded with l dummy

symbols on the left and r dummy symbols on the right and the padded string is

then scanned and processed. Setting k = 15 only means that up to 15 letters of

context may be used, and one often has to back off to much shorter conditioning

contexts. On the other hand, using ten letters of lookahead like Stanfill and Waltz

[1986] makes it theoretically possible to perfectly predict the pronunciations of all

words (ignoring homographs) of length 10 or less, which together make up more

than 89% or the NETtalk data.

If we contrast the current classifier-based approach with OSTIA discussed in

Section 3.2, we see that many of the deficiencies of OSTIA are absent or greatly

reduced.

73

Robustness to variation Brittleness is generally not an issue, since most classi-

fier learners can deal with conflicting labeling arising from substrings like

〈aughter〉 being pronounced differently in 〈slaughter〉 vs. 〈laughter〉. More-

over, no serious classifier learner would terminate abnormally just because

it was presented with two or more identical instances bearing conflicting

labels.

Robustness to out-of-class data The current approach is well behaved on out-of-

class training data, i. e., it is agnostic in the same sense OSTIA is not. By

examining substrings of length k it constructs a k-local approximation to

whatever target function the training data were actually sampled from. If

the target concept happens to be k-local, it can be inferred exactly if the

training data are a characteristic sample. Moreover, there exist polynomial-

time algorithms that determine whether a regular language is k-testable and

which find an approximate minimum value of k for which a language is k-

testable [Kim and McNaughton, 1994].

Total mapping Under some reasonable assumptions it is easy to ensure that the

inferred transducers realize total functions: even though there may be letter

sequences of length k that are not found in the training data, one can back

off to shorter contexts, and in the worst case only the central letter of a win-

dow is used for prediction. Assuming all letters of the alphabet have been

seen in the training data, one can easily guarantee that the classifier and,

therefore, the inferred transducer correspond to total functions on their re-

spective domains.

More appropriate hypothesis space The strictly local deterministic same-length

transductions are a proper subclass of the subsequential transductions, yet

74

by focusing on the more restrictive class of concepts we do not seem to lose

anything (this is hard to quantify, since our attempts to use OSTIA were un-

successful for the reasons described in Section 3.2). As mentioned above,

strict locality has been observed and quantified [Lucassen and Mercer, 1984]

for many linguistic domains, especially for phonemic modeling.

Data requirements On the downside, the classifier-based approach described

here requires same-length data, which typically means aligned pronuncia-

tion dictionaries. If aligned data are not available, an alignment procedure

[see for example Daelemans and van den Bosch, 1997; Sproat, 2001] must

first be carried out, which can be a source of mistakes. But even if aligned

data like the NETtalk dictionary are used, there is no guarantee that the align-

ments are consistent or helpful.

3.3.2 Aligned Data Requirement

The requirement of aligned data is troubling, for several reasons. First, it means

that in general training data will have to be preprocessed by an alignment pro-

cedure. There are many possible alignments of two strings – often exponentially

many, depending on the alignment model – from which an alignment procedure

has to pick one. Moreover, when an alignment procedure is applied to a whole

pronunciation dictionary, it would not suffice if it were to randomly pick an align-

ment for each dictionary entry. Whatever criteria are applied to pick an alignment

between a letter string and a phoneme string must be applied consistently across

the dictionary.

We can view this as a combinatorial optimization problem, if we can supply

an objective function that quantifies the overall quality of an aligned dictionary.

75

It should be kept in mind that the overall goal goes beyond the production of

aligned dictionaries. In fact, we do not regard the result of the alignment step as

an essential level of representation, we have not defined any evaluation criteria

that would apply to aligned dictionaries, and we doubt that there exist useful

independent objective criteria. We see an aligned dictionary solely as a practical

requirement for the classifier-based approach to learning letter-to-sound transdu-

cers, and therefore the quality of an aligned dictionary can only be quantified in

terms of its utility and contribution to the overall learning task.

It is then easy to define an objective function for the alignment procedure: the

quality of an aligned dictionary is defined as the quality of the optimal classifier

inferred on the basis of the aligned dictionary. It is not clear that there are effi-

cient algorithms for an alignment procedure with this objective. For one thing,

optimal classifier learning can be a hard problem [Hyafil and Rivest, 1976, see

for example]. But even if we assume the presence of an oracle that can tell us

the classification performance of an optimal classifier trained on a given aligned

dictionary, formulating efficient algorithms for the alignment step does not seem

straightforward. While the problem of aligning two strings can be decomposed

and solved efficiently by a dynamic programming algorithm [Wagner and Fis-

cher, 1974], the problem we are faced with is finding optimal alignments over an

entire collection of string pairs, for which an equally simple decomposition does

not seem possible in general. The problem is that we are not simply interested

in the least-cost alignment of two strings given a fixed cost function. Rather, the

global cost function has to be treated as variable and linked to the quality of a

classifier trained on the aligned data, so that the cost function and alignments

are mutually dependent: alignments are chosen to minimize cost, and the cost

function depends on the performance of a classifier trained on aligned data.

76

In practice, alignment procedures sometimes use ad hoc solutions [Daelemans

and van den Bosch, 1997], or optimize alignments under a very simple classifi-

cation model while actually using much more sophisticated classifiers [Sproat,

2001]. In this last approach, the classification model used for computing align-

ments is essentially the same as in most of the toy examples in Section 2.4, namely

phonemes are predicted based on a window of size one, i. e. without using any

context preceding or following the central letter. This means that the optimal

classifier that minimizes prediction error is the one that picks for each letter the

phoneme most frequently associated with it. Sproat [2001] uses a relatively sim-

ple non-contextual model like this to obtain an initial alignment, but the decision

tree classifiers inferred on the basis of the aligned data do use contextual informa-

tion from a symmetric seven-letter window. The overall approach proposed by

Sproat [2001] is unique in that it is iterative: alignments are updated and recom-

puted based on the predictions of the richer decision tree classifier. However, the

improvements from the iterative updates are comparatively small, which would

suggest that the overall performance depends fairly crucially on the quality of the

initial alignment and the model used to obtain that alignment.

Starting from aligned data also makes the overall learning task less interest-

ing if the goal of learning is to discover interesting regularities in the data. For

example, Rentzepopoulos et al. [1993, p. 324] describe their segmentation and

alignment procedure for the phoneme-to-letter task and conclude:

[This] procedure has to be done off-line by hand in order to produce
a set of rules for the segmentation of the input speech into symbols.
This is the only part of the algorithm which is language-specific and
requires knowledge of the spelling of the language.

On this view, which is entirely justifiable, discovering key aspects of the spelling

system of a language is outside the scope of the learning algorithm proper, and

77

has been moved into the typically marginalized area of data preparation. Similar

criticism could be leveled against approaches to letter-to-sound that use a fixed

inventory of multi-phoneme symbols [Sejnowski, 1988; Minker, 1996]: the fact

that in the NETtalk dictionary the letter 〈x〉 is predominantly aligned with multi-

phoneme symbols that stand for the phoneme strings /ks/, /kS/, or /gz/ makes it

unnecessary to discover that 〈x〉 is somehow special in English orthography.

Ideally, we would prefer algorithms that work with unaligned data and in-

tegrate the discovery of alignments, if necessary, tightly with the discovery of

letter/phoneme correspondences. The approaches discussed here either require

aligned data, or use a simple alignment procedure that is usually (Sproat 2001 is

the exception) decoupled from the classifier inference procedure.

3.4 Morphisms of Free Monoids

Computational aspects of the classifier-based approach can be studied abstractly

in terms of inferring certain morphisms of free semigroups or free monoids. Re-

call that a nonempty string over a fixed finite alphabet Σ can be viewed as an

element of the free semigroup generated by Σ, which is usually written Σ+. For-

mally, a semigroup is a tuple 〈A, ·〉 where · is an associative binary operation on

A, called multiplication, and A is closed under this multiplication operation. A

semigroup 〈A, ·〉 is free just in case every element has a unique factorization, and

it is freely generated by a subset B ⊆ A if every element has a unique factorization

in terms of elements of B. If a semigroup lacks a multiplicative identity element, it

is always possible to add one to turn the semigroup into a monoid. For example,

Σ∗ = Σ+ ∪ {ε} is the monoid freely generated by Σ, where we have added ε, the

empty string, as the identity element.

78

A semigroup morphism f : A → B preserves the structure of semigroups, i. e.,

f (x · y) = f (x) · f (y) for all x, y ∈ A. A monoid morphism also maps the unit

element of A onto the unit element of B. A semigroup morphism whose domain

is a free semigroup Σ+ is completely characterized, due to unique factorization,

by the images it assigns to the generators of the semigroup, i. e. the elements of

Σ: if the factorization of w ∈ Σ+ is w1 · · ·wn, then f (w) = f (w1) · · · f (wn) with

wi ∈ Σ for 1 ≤ i ≤ n. The same holds for monoid morphisms.

Another property of free monoids and free semigroups is that any function

f : Σ → A from a finite set Σ onto a monoid (resp. semigroup) A can be uniquely

extended to a monoid morphism Σ∗ → A (resp. semigroup morphism Σ+ → A),

which we call f ∗. To evaluate f ∗(w) when f is known, either w = ε and so

f ∗(w) = ε by definition, or else w ∈ Σ+ can be uniquely factorized into w1 · · ·wn

for some n > 0 where wi ∈ Σ (1 ≤ i ≤ n), and f ∗(w) = f (w1) · · · f (wn).

Sequential string-to-string transductions can be viewed as generalizations of

morphisms of free monoids [Eilenberg, 1974]. Conversely, morphisms of free

monoids are precisely those mappings that can be computed by generalized se-

quential machines with a trivial one-state topology [Eilenberg, 1974, p. 299]. We

are especially interested in the following two classes of morphisms between free

monoids [Eilenberg, 1974, p. 6]:

Definition 3.5 (Fine morphism). A morphism f : Σ∗ → Γ∗ between free monoids

is called a fine morphism just in case f (x) ∈ Γ ∪ {ε} for all x ∈ Σ.

Definition 3.6 (Very fine morphism). A morphism f : Σ∗ → Γ∗ between free

monoids is called a very fine morphism, or an alphabetic substitution, if f (x) ∈ Γ for

all x ∈ Σ.

79

The learning problem associated with the classifier-based approach can now

be formulated in terms of inference of a very fine morphism: if we use a win-

dow of size one, then the classifier we want to learn is formally a very fine mor-

phism. This gives us a different perspective on the learning problem, as we can

now ask what would happen if we generalized the hypothesis space to fine mor-

phisms. That would mean that we no longer require that letter strings and pho-

neme strings are of the same length, since a fine morphism is allowed to erase cer-

tain letters. So an approach based on inference of fine morphisms can be applied

to pairs of letter strings and phoneme strings provided the length of each pho-

neme string is less than or equal to the length of the corresponding letter string.

This is the case for more than 98% of all entries in CMUdict, and also among its

112,108 purely alphabetic entries (whereas only about 24% of the CMUdict entries

have letter strings and phoneme strings of equal lengths). Inference of a fine mor-

phism thus includes the computation of alignments for the vast majority of the

entries of an ordinary unaligned pronunciation dictionary.

Limiting our attention to one-letter windows does not imply a loss of gener-

ality. We can easily incorporate more context by a combination of deterministic

preprocessing steps (“shingling”). The idea is to cram the desired context into the

one-letter window by enriching the input alphabet. If we ultimately want to use

windows of size k for prediction, we choose a new input alphabet that slightly

extends Σk. Because the original alphabet Σ is finite, the new alphabet too will be

finite (and in fact only polynomially larger), and so we stay within the realm of

finite automata.

80

Input (letter) strings can be augmented straightforwardly to include predeter-

mined amounts of left context (history) or right context (lookahead). We illustrate

the two simplest cases, in which we want to include one letter of context at each

position in the input string. Introducing one letter of left context means determin-

istically transforming a length n input string of the form

a1 a2 · · · an

into the string (also of length n)

〈-, a1〉 〈a1, a2〉 · · · 〈an−1, an〉

where 〈-〉 is a padding symbol introduced to represent the imaginary left context

at the left edge of the original string. If the original alphabet was Σ, the new

alphabet is (Σ ∪ {-})× Σ.

Mappings of this sort can be computed by strictly k-local same-length trans-

ducers. A concrete example of a strictly 2-local transducer with input alphabet

Σ = {a, b} is shown in Figure 3.3.

Adding one letter of right context means replacing an input string of the form

a1 a2 · · · an

by the string

〈a1, a2〉 〈a2, a3〉 · · · 〈an, -〉

where 〈-〉 represents the imaginary context beyond the right edge of the original

string. If the original alphabet was Σ, the new alphabet is now Σ× (Σ ∪ {-}).

81

a:(-,a)

b:(-,b)

a:(a,a)

b:(a,b)

a:(b,a)

b:(b,b)

Figure 3.3: A local sequential transducer that introduces left context.

This mapping can be computed by an augmented version of a strictly k-local

same-length transducer which adds a subsequential output function that asso-

ciates final states with final output strings. Figure 3.4 shows a concrete example

of such a transducer over the input alphabet Σ = {a, b}. Two states have a non-

empty final output, which is displayed inside the circles representing the states.

Both transducers define bijections between plain and augmented strings; their

inverses are very fine morphisms that forget the added context. These techniques

generalize straightforwardly to larger amounts of context, and they can be com-

bined to produce the kinds of windows discussed earlier and illustrated in Fig-

ure 3.2.

Note especially that for present purposes the elements of the new alphabet

are viewed as unanalyzable units. Any practical classifier would still be at liberty

to analyze the internal structure of these symbols before deciding which output

symbol to produce. Reducing the learning problem to inference of (very) fine

morphisms of free monoids abstracts away from most details of local transducers

82

(a,-)a:
(b,-)

b:

a:(a,a)

b:(a,b)

a:(b,a)

b:(b,b)

Figure 3.4: A local subsequential transducer that introduces right context.

and allows us to concentrate on morphisms and their associated learning prob-

lems. One encouraging aspect of this reduction is that the hypothesis space has

become finite: for finite alphabets Σ and Γ there are only finitely many (very)

fine morphisms from Σ∗ to Γ∗. For the more general case of fine morphisms,

the hypothesis space H is the set of all functions from Σ to Γ ∪ {ε}, for which

ln |H| = |Σ| ln(|Γ|+ 1). Because of the way sample complexity in the PAC learn-

ing model [Valiant, 1984] is defined in terms of ln |H| [Kearns and Vazirani, 1994,

sec. 3], this means that the problem of learning fine morphisms has polynomial

sample complexity. If there were an efficient algorithm that outputs a consistent

hypothesis for a given sample, fine morphisms might be efficiently PAC learnable.

Unfortunately, as the next section will show, this is almost certainly not the case.

83

3.5 Learning Tasks and their Complexity

This section formulates a number of formal problems related to learning fine mor-

phisms and very fine morphisms. At the core of these problems are the question

of whether there is a morphisms which is consistent with a set of data and the

task of finding a morphism which optimizes a fixed loss function. Most of these

problems turn out to be quite hard. This is not very surprising in light of other

studies of the complexity of natural language processing and machine learning

tasks [for example Hyafil and Rivest, 1976; Barton et al., 1987; Brew, 1992; Knight,

1999; Casacuberta and de la Higuera, 2000; de la Higuera and Casacuberta, 2000].

The previous section showed that any strictly local transduction correspond-

ing to the approach outlined in Section 3.3 can be viewed as a morphism of free

monoids that gets applied to deterministically transformed input strings (that

may incorporate a fixed amount of local context). The transformations that ac-

cumulate local context are generally held constant, in other words, a maximum

window size is selected initially and not subject to change during the learning

phase. So we can view the learning task abstractly as inductive inference of mor-

phisms of free monoids.

The domain of the morphisms we want to infer is some fixed finite alphabet

Σ. This may be the result of a preprocessing transformation and correspond to n-

tuples of letters, but the present formulation of the problem allows us to abstract

away from such details. We therefore speak abstractly of input symbols when re-

ferring to the elements of Σ.

We focus on the two kinds of morphisms singled out above. As noted there,

inference of very fine morphisms corresponds to working with aligned data; and

84

inference of fine morphisms corresponds to discovering alignments, subject to the

length constraints discussed earlier.

The model of learning used here is not limit-identification [Gold, 1967] as for

OSTIA and other grammatical inference procedures. Instead we focus initially

on the problem of finding consistent hypotheses, which is relevant for PAC learn-

ing, and more generally on empirical risk minimization. Although empirical risk

minimization has drawbacks [Minka, 2000], particularly if the training data are

not representative of the distribution of future data, it is used by most practical

approaches to learning deterministic letter-to-sound rules.

There are three main notions of empirical risk, corresponding to the three

kinds of loss functions defined in Section 2.3. As noted there, prediction error

is only applicable with aligned data, whereas symbol error and string error are

universally applicable. So we obtain the following five empirical risk minimiza-

tion problems:

1. Given a finite aligned dictionary D ⊆
⋃

n∈N Σn × Γn find a very fine mor-

phism with minimal prediction error (rate) on D.

2. Given a finite dictionary D ⊆ Σ∗ × Γ∗ find a very fine morphism with mini-

mal string error (rate) on D.

3. Given a finite dictionary D ⊆ Σ∗ × Γ∗ find a very fine morphism with mini-

mal symbol error (rate) on D.

4. Given a finite dictionary D ⊆ Σ∗ × Γ∗ find a fine morphism with minimal

string error (rate) on D.

5. Given a finite dictionary D ⊆ Σ∗ × Γ∗ find a fine morphism with minimal

symbol error (rate) on D.

85

Note that there is no problem asking for a fine morphism that minimizes predic-

tion error rate on an aligned dictionary, since such a morphism would necessarily

be very fine (except in some trivial and unimportant cases).

The first problem of finding a very fine morphism that minimizes prediction

error rate is very easy to solve. It was formulated in such a way as to make it ap-

pear similar to the remaining four problems, but this superficial similarity soon

disappears: observe that the loss function is defined in terms of individual sym-

bol occurrences, not in terms of whole strings. So there is no need to distinguish

the elements of D. In fact, we can assume w. l. o. g. that the cardinality of D is one,

since the elements of D can be concatenated without affecting the total or average

loss. For each element σ of Σ occurring in D do the following: keep count of how

often it is aligned in D with a symbol from Γ (this only requires counters, and can

therefore be done in logarithmic space); then determine the element γ of Γ with

the highest count (breaking any ties arbitrarily), and set f (σ) ← γ. Finally, return

f . Observe that f is a partial function Σ → Γ that can be extended to a very fine

partial morphism f ∗ : Σ∗ → Γ∗, since Γ ⊆ Γ∗ by minor abuse of notation. Correct-

ness is obvious, since choosing majority labels minimizes prediction error. The

overall procedure requires logarithmic space, and time linear in the total length

of all strings in D.

In reality, the problem is somewhat harder, since only a small fraction of Σ

may be represented in D, especially if the elements of Σ have internal structure

due to a preprocessing step. Practical approaches need to extend the morphism

so that it also applies to elements of Σ not encountered in D, but this is generally

only possible if the elements of Σ can be decomposed and analyzed.

The remaining four problems are intuitively much harder. Since symbol error

and string error are not formulated in terms of individual symbols but in terms of

86

whole string pairs, minimizing either loss function appears to be a fairly intricate

combinatorial optimization problem, involving tradeoffs of the sort seen in some

of the examples from Section 2.4.

3.5.1 Exact Solutions

In this subsection we focus on the optimization problems corresponding to em-

pirical risk minimization. We had formulated two versions of the problem of

learning a fine morphism, namely finding a fine morphism that minimizes the

string error rate, resp. the symbol error rate, on the training data D. Since we

are interested in exact solutions, we could also maximize string accuracy, resp.

symbol accuracy.

The problem of finding a function f : Σ → Γ ∪ {ε} such that the empirical risk

of f ∗ is minimal is fundamentally a combinatorial optimization problem. Like

all such problems it can be stated formally in different ways [Papadimitriou and

Steiglitz, 1998, p. 345f.]: the optimization version asks for the optimal f for a

given set of samples D ⊆ Σ∗ × Γ∗; the evaluation version asks for the total loss

incurred on D by the optimal f ∗; and the decision version asks whether there

exists an f ∗ such that the total loss incurred by it on D is less than or equal to a

given budget k. A solution to the optimization version could be used to construct

an answer to the evaluation version, which in turn could be used to solve the

decision version. Contrapositively, if the decision version is hard to solve, so are

the other two versions.

The optimization problem corresponding to string error minimization has the

following associated decision problem. An analogous problem MIN-VFMC for

very fine morphisms could be defined similarly. The decision problem is stated

87

in a format similar to the one used by Garey and Johnson [1979] and asks whether

or not a solution exists within a given budget k:

Problem 3.1 (Fine morphism minimization – MIN-FMC)

Instance: A finite sequence D = 〈s1, . . . , sn〉 where each si ∈ Σ∗ × Γ∗ for 1 ≤ i ≤ n;

and a natural number k with k ≤ n.

Question: Does there exist a fine morphism which is inconsistent with at most k

elements of D, i. e., is there a function f : Σ → Γ ∪ {ε} and a length m = n − k

unordered subsequence 〈t1, . . . , tm〉 of D such that ti ∈ #(f ∗) for all 1 ≤ i ≤ m?

Observe that the string error rate of a particular morphism on a given data set

D is zero if and only if its symbol error rate on D is zero. This holds if symbol

error rate is defined as Levenshtein distance (see page 121), or under any other as-

signment of insertion, deletion and substitution costs, provided all matches (sub-

stitutions of identical symbols) have zero cost and all other edit operations have

strictly positive costs. In other words, there is a common subproblem of the de-

cision version of the fine morphism optimization problem which is independent

of the loss function used: the restricted decision version (with budget k = 0) asks

whether there exists an f ∗ such that the total loss incurred by it on D is identically

zero. We call this the consistency problem. Obviously, if the decision version of an

optimization problem can be solved efficiently, so can the consistency problem.

An answer to the questions posed in the following two variants of the consis-

tency problem would tell us whether appropriate morphisms exists that reduce

the empirical loss to zero.

88

Problem 3.2 (Very fine morphism consistency – VFMC)

Instance: A finite (multi)set D ⊆ Σ∗ × Γ∗.

Question: Does there exist a very fine morphism consistent with all elements of D,

i. e., is there a function f : Σ → Γ such that D ⊆ #(f ∗)?

Problem 3.3 (Fine morphism consistency – FMC)

Instance: A finite (multi)set D ⊆ Σ∗ × Γ∗.

Question: Does there exist a fine morphism consistent with all elements of D, i. e.,

is there a function f : Σ → Γ ∪ {ε} such that D ⊆ #(f ∗)?

Clearly FMC is a special case of MIN-FMC. If there were a polynomial time

algorithm for solving the latter, then FMC could be solved in polynomial time, by

calling the hypothetical MIN-FMC algorithm with the budget k set to zero.

Of the two consistency problems formulated here, FMC is intuitively more dif-

ficult than VFMC, since one has to decide which input symbols are mapped to the

empty string, or equivalently, how the output strings should be aligned relative

to the inputs. This issue does not arise with VFMC since only strings of equal

length need to be considered (if D contains a pair of strings with different lengths,

then no very fine morphism can be consistent with D). The remainder of this

subsection makes these intuitions about the difficulty of FMC more precise.

The size of an instance of one of these problems is the total length of all strings

in the dictionary D:

Definition 3.7 (Dictionary size). Define the size ‖D‖ of a dictionary D ⊆ Σ∗ × Γ∗

as

‖D‖ = ∑
〈x,y〉∈D

|x|+ |y|

where |w| is the length of string w.

89

We will prove that problem FMC is complete for the complexity class NP [see

for example Garey and Johnson 1979 for a definition]. Membership of FMC in NP

can be established straightforwardly:

Theorem 3.1. Problem FMC has succinct certificates that can be verified in polynomial

time.

Proof. A certificate for FMC is a partial function f : Σ → Γ ∪ {ε}, which can be

represented in space linear in ‖D‖ (because w. l. o. g. f only mentions elements of

Σ that occur in D). Verification amounts to applying f ∗ to each input string in D

and comparing the results to the corresponding reference output contained in D.

The verification procedure, shown in Figure 3.5, runs in time linear in ‖D‖.

On the other hand, problem VFMC for very fine morphisms can be solved effi-

ciently in linear time and space by the following procedure: iterate over D, and

any time a previously unseen input symbol σ is encountered, set f (σ) ← γ where

γ is the output symbol aligned with σ; run the verification algorithm from Fig-

ure 3.5 on D and f and return its answer.

NP-hardness of FMC is established by a reduction from 3SAT, the decision

problem asking whether there is a satisfying truth assignment for a set of dis-

junctive clauses with at most three literals each. We first define the construction

and then prove that it correctly preserves the structure of 3SAT.

Definition 3.8 (Boolean variable gadget). For any Boolean variable v, the set

V (v) contains the following pairs (av and bv are new symbols dependent on v):

〈av v v bv, FTF〉

〈av bv, F〉

90

1: � Input: instance D of FMC, certificate f
2: for each 〈x, y〉 ∈ D do
3: a1 · · · an ← x
4: b1 · · · bm ← y
5: j ← 1
6: for i ← 1 to n do
7: if f (ai) 6= ε then
8: if j > m then
9: return false

10: else if f (ai) 6= bj then
11: return false
12: else � f (ai) matches bj
13: j ← j + 1
14: end if
15: end if
16: end for
17: if j 6= m + 1 then
18: return false
19: end if
20: end for
21: return true

Figure 3.5: Certificate verification algorithm for FMC.

91

The Boolean variable gadget encodes the fact that a variable occurring in a

3CNF formula can take on only the values T (true) and F (false). It consists of two

entries that will become part of a larger dictionary constructed by the reduction.

A fine morphism that is consistent with that dictionary can map the symbols v

and g only to T or F, and maps v to T iff it maps v to F. To see why this is the

case, consider the first tuple. It is clear that exactly one of the input symbols must

be mapped to the empty string εby a consistent fine morphism, since the output

string FTF is one symbol shorter. If either v or v were mapped to ε, then both av

and bv would get mapped to F. But such a mapping would be inconsistent with

the second tuple, since it would wrongly predict an output string of FF instead of

F. Therefore the only choice is to map either av to F and bv to ε, or the other way

round. To ensure that av and bv do not appear in any gadgets for other, unrelated

variables, now concrete symbols av and bv have to be chosen for each variable v.

Definition 3.9 (3SAT clause gadget). For any 3SAT clause Ci of the form (li1 ∨

li2 ∨ li3) (where each lij is a literal of the form v or v) the set C (Ci) contains the

following pairs (all of cij, dij, ei and fi are new symbols dependent on i):

〈ci1 li1 di1, FT〉

〈ci2 li2 di2, FT〉

〈ci3 li3 di3, FT〉

〈di1 di2 di3 ei fi, TT〉

The 3SAT clause gadget represents the constraint that in a clause C of the form

(l1 ∨ l2 ∨ l3) at least one literal lj must be true for the overall formula to be satisfied.

A literal is a plain or negated variable, which can also be viewed as an input

92

symbol in the dictionary built by the reduction. Each literal lj is represented as

an input string cj lj dj that must be correctly mapped to the output string FT by

a consistent fine morphism. The Boolean variable gadgets described previously

ensure that a plain or negated variable like lj can only be mapped to T or F by

a consistent morphism. But this means that dj can only be mapped to T or ε.

The last pair, however, is 〈d1 d2 d3 e f , TT〉, so at most two symbols among d1, d2

and d3 get mapped to T by a consistent fine morphism. In other words, at least

one dj must map to the empty string ε, which means that the corresponding lj

must map to T, thus making the clause C true. As in the Boolean variable gadget,

the symbols other than those corresponding to literals or variables of the original

formula must be unique for each clause, so that there are no additional constrains

between clauses not present in the 3CNF formula.

Definition 3.10 (Reduction from 3SAT). Given an instance φ =
∧n

i=1 Ci of 3SAT,

define D(φ) as the collection
⋃n

i=1 C (Ci) ∪
⋃
{V (v) | variable v occurs in φ}.

For example, if φ = (x ∨ x ∨ y), the dictionary D(φ) defined by this reduction

contains the following entries:

〈axxb, FTF〉 〈ex f , FT〉

〈ab, F〉 〈gxh, FT〉

〈cyyd, FTF〉 〈iyj, FT〉

〈cd, F〉 〈 f hjkl, TT〉

Theorem 3.2. The reduction from 3SAT to FMC can be computed in logarithmic space

and creates an instance whose size is polynomial in the size of the original instance.

Proof. The reduction D , which can be made to run in linear time, builds a collec-

tion D(φ) with the following properties: let m be the number of distinct variables

93

of φ (so m ≤ 3 n); then ‖D(φ)‖ = 10 m + 22 n ≤ 52 n, |D(φ)| = 2 m + 4 n ≤ 10 n,

|Σ| = 4 m + 8 n ≤ 20 n, and |Γ| = 2. Only counters need to be stored for comput-

ing the reduction (in order to keep track of clauses and variables represented by

integers), which requires logarithmic space.

Theorem 3.3. Problem FMC is NP-hard.

Proof. We show that φ =
∧n

i=1 Ci is satisfiable iff there exists a fine morphism

f ∗ consistent with D(φ). It will be convenient to let V denote the set of distinct

variables of φ.

(⇒) Assume that φ is satisfiable, i. e., there exists a satisfying assignment τ :

V → {T, F}. Incrementally define a fine morphism f ∗ consistent with D(φ) as

follows: for all v ∈ V, let f (v) = τ(v) and f (v) = τ(v). If τ(v) = T, let f (av) = F

and f (bv) = ε, which makes f ∗ consistent with V (v); otherwise, if τ(v) = F, let

f (av) = ε and f (bv) = F to make f ∗ consistent with V (v). In either case f ∗ can

be made consistent with V (v), and because av and bv do not occur outside the

gadget for v, f ∗ can be made consistent with all variable gadgets.

The fact that τ is a satisfying assignment means that in each clause Ci at least

one literal is made true by τ. So f will map at most two dij in C (Ci) to T, and

therefore the definition of f ∗ can always be extended to make it consistent with

the fourth pair in C (Ci) and hence consistent with the entire clause gadget for Ci.

Since all symbols in a gadget other than literals of φ occur only in that gadget,

the definition of f ∗ can be extended to make it consistent with all gadgets and

therefore consistent with D(φ). Hence there exists a consistent fine morphism f ∗

constructible from τ.

94

(⇐) Conversely, assume that a fine morphism g consistent with D(φ) exists.

We show that g|V , i. e. g restricted to the variables of φ, is a satisfying truth assign-

ment for φ. Obviously g being consistent with D(φ) means that g is consistent

with all variable gadgets and all clause gadgets.

Pick any variable gadget V (v). Then, because of the second pair in V (v), g

must map exactly one of av and bv to F: if g(av) = F then g(bv) = ε, and for the

first pair g(v) = T and g(v) = F; otherwise if g(bv) = F, then g(av) = ε, g(v) = F,

and g(v) = T. Note in particular that g|V(v) ∈ {T, F}, so g|V is formally a truth

assignment.

Now pick any clause gadget C (Ci) and suppose that g maps no lij in C (Ci)

to T. Then all dij in C (Ci) are mapped to T because of the first three pairs in that

clause gadget. But this would make g inconsistent with the fourth pair, contradict-

ing the assumption that g is consistent with all clause gadgets. So g must map at

least one lij in C (Ci) to T, which means that g|V makes the clause Ci true, and is

therefore a satisfying truth assignment for φ.

The preceding three theorems together imply that the consistency problem

FMC is NP-complete. The existence of efficient deterministic algorithms for solv-

ing FMC is therefore unlikely. Since FMC is a subproblem of empirical risk mini-

mization, the decision version MIN-FMC of this optimization problem is also NP-

hard. Showing that the decision versions of the optimization problems are in NP

is straightforward, but requires separate proofs depending on which loss function

is used. If the loss function is string error (MIN-FMC) only a few minor modifica-

tions to the certificate verification algorithm in Figure 3.5 are required, which now

has to aggregate the number of mistakes and compare it to the budget k. For loss

based on edit distance, using the standard dynamic programming algorithm to

95

compute edit distances [Wagner and Fischer, 1974] ensures that certificates can

be verified in polynomial time. In other words, the decision versions of all em-

pirical risk minimization problems for fine morphisms are NP-complete, because

they contain the NP-complete consistency problem FMC as a subproblem.

The optimization version of empirical risk minimization, which asks for a func-

tion f such that the associated fine morphism f ∗ minimizes string error on D, is a

function problem [Papadimitriou, 1994, sec. 10.3]. As such it is FNP-hard because

the decision version MIN-FMC is NP-hard, but the optimization version is proba-

bly not a member of FNP, since that would require concise certificates which can

attest to the optimality of f . We conjecture that the optimization version of MIN-

FMC is in fact FPNP-complete, just like the traveling salesperson problem (TSP)

[Papadimitriou, 1994, pp. 418ff.].

3.5.2 Approximate Solutions

The remaining problems concern inference of very fine morphisms. They are

treated separately, because it is possible to show stronger results than in the

preceding subsection about the existence of nonexistence of approximation algo-

rithms.

It was shown earlier that the simple consistency problem VFMC can be solved

very efficiently. An interesting related problem is MAX-VFMC, which asks for a

very fine morphism that maximizes string accuracy. Let us define MAX-VFMC

formally:

Problem 3.4 (Very fine morphism maximization – MAX-VFMC)

Instance: A finite sequence D = 〈s1, . . . , sn〉 where each si ∈
⋃

j∈N Σj × Γj for

96

1 ≤ i ≤ n; and a natural number k with k ≤ n.

Question: Does there exist a very fine morphism consistent with at least k elements

of D, i. e., is there a function f : Σ → Γ and a length k unordered subsequence

〈t1, . . . , tk〉 of D such that ti ∈ #(f ∗) for all 1 ≤ i ≤ k?

It will become clear that MAX-VFMC is actually a hard problem, which hap-

pens to have an efficiently solvable subproblem, namely VFMC. The situation is

vaguely reminiscent of the case of 2SAT. The decision version of 2SAT is a re-

stricted version of the satisfiability problem in which each clause consists of at

most two disjunctive literals. Although 2SAT can be decided efficiently (in nonde-

terministic log-space [Papadimitriou, 1994, pp. 184f.] and therefore in polynomial

time), the corresponding optimization problem MAX-2SAT is NP-complete [Garey

and Johnson, 1979; Papadimitriou, 1994; Ausiello et al., 1999].

We establish a slightly stronger result about MAX-VFMC by showing that it is

hard to approximate in polynomial time (we follow the terminology of Ausiello

et al. [1999]):

Theorem 3.4. Problem MAX-VFMC is APX-hard.

Proof. Show this by exhibiting an AP-reduction from an APX-complete problem.

It suffices to show that MAX-k-CSP is L-reducible [Papadimitriou, 1994, pp. 309ff.]

to MAX-VFMC. MAX-k-CSP is a constraint satisfaction problem with conjunctive

constraints containing at most k literals [see for example Khanna et al., 1997b;

Ausiello et al., 1999].

Given an instance C = 〈(l11 ∧ · · · ∧ l1k), . . . , (ln1 ∧ · · · ∧ lnk)〉 of MAX-k-CSP,

construct an instance of MAX-VFMC by mapping the ith constraint (li1 ∧ · · · ∧ lik)

to the pair 〈li1li1 · · · liklik, TF · · · TF〉 to form D (if a literal l is negative, i. e. is of the

97

form v, then l is simply v). So Σ consist of the negated and unnegated variables

of C, and Γ = {T, F}.

This construction ensures that there is a truth assignment τ that makes exactly

m constraints of C true iff there exists a very fine morphism f ∗ which is consistent

with exactly m elements of D. One can construct f from τ (and vice versa) by

letting f (v) = τ(v) and f (v) = τ(v), where v is a variable occurring in C.

This means that there is no polynomial-time approximation scheme (PTAS) for

MAX-VFMC (unless P = NP). The best we can hope for would be to show that

MAX-VFMC belongs to APX, which would mean that there is a polynomial-time

algorithm with an approximation ratio bounded by some constant r > 1. While

this seems likely, we have no definitive answer either way, and so this is left as an

open problem.

Instead of maximizing string accuracy we can minimize string error rate. As

discussed in Section 2.5, these two problems are generally distinct when approx-

imation algorithms are involved. The minimization problem can be formulated

like this:

Problem 3.5 (Very fine morphism minimization – MIN-VFMC)

Instance: A finite sequence D = 〈s1, . . . , sn〉 where each si ∈
⋃

j∈N Σj × Γj for

1 ≤ i ≤ n; and a natural number k′ with k′ ≤ n.

Question: Does there exist a very fine morphism inconsistent with at most k′ ele-

ments of D , i. e., is there a function f : Σ → Γ and a length k = n− k′ unordered

subsequence 〈t1, . . . , tk〉 of D such that ti ∈ #(f ∗) for all 1 ≤ i ≤ k?

It is clear from Section 3.5.1 that VFMC is no harder than 2SAT; in fact, both

problems are in P. The point of the following reduction is that it applies both to

98

1: � Input: instance D of VFMC
2: V ← {}
3: φ ← 〈 〉
4: for each σ ∈ Σ do
5: for each γ ∈ Γ do
6: V ← V ∪ {xσ,γ}
7: for each γ′ ∈ Γ do
8: if γ 6= γ′ then
9: for i ← 1 to len(D) do

10: φ ← φ · 〈(xσ,γ ∨ xσ,γ′)〉
11: end for
12: end if
13: end for
14: end for
15: end for
16: for i ← 1 to len(D) do
17: 〈u, w〉 ← D[i]
18: V ← V ∪ {yi}
19: φ ← φ · 〈(yi)〉
20: for j ← 1 to len(u) do
21: φ ← φ · 〈(xu[j],w[j] ∨ yi)〉
22: end for
23: end for
24: return 〈V, φ〉

Figure 3.6: Reduction from MIN-VFMC to MIN-2SAT.

the simple decision problems, as well as the decision versions of the full optimiza-

tion problems. This will establish that MIN-VFMC is MIN-2SAT-easy.

Definition 3.11 (Reduction of (MIN-)VFMC to (MIN-)2SAT). Given an instance

D of VFMC with alphabets Σ and Γ, construct a set of variables V and a sequence

φ of 2-CNF clauses using the algorithm in Figure 3.6.

99

It is obvious from this statement of the reduction that the computation can be

carried out in polynomial time. It creates new variables of the form xσ,γ which

encode the mapping performed by the very fine morphism: there exists a very

fine morphism f ∗ consistent with D such that f is defined for a and f (a) = b iff a

satisfying assignment τ for φ can be found such that τ(xa,b) = T and τ(xa,γ) = F

for all γ 6= b. The constraints involving two x variables (line 10 of Figure 3.6)

ensure that it is impossible for xa,b and xa,c (b 6= c) to both be true. It is however

possible that xa,γ is false for all γ ∈ Γ, in which case f is not defined for a (to

ensure that f is total one would have to add a clause
∨

γ∈Γ xa,γ with the result

that φ would not necessarily be a 2-CNF formula but rather a |Γ|-CNF formula).

A variable of the form yi encodes the requirement that the very fine morphism

f ∗ be consistent with the ith sample in D (see line 19 of Figure 3.6). Suppose D[i],

the ith element of D, is 〈a1 · · · an, b1 · · · bn〉. For all j (1 ≤ j ≤ n), if f (aj) = bj

then it is possible to find a truth assignment that makes xaj,bj true and so the

clause (xaj,bj ∨ yi) (line 21) is satisfied no matter what truth value is assigned to yi.

Therefore if f ∗ is consistent with D[i] it is possible to set yi to true to satisfy the

clause involving only yi. Conversely assume that there is a satisfying assignment

τ for φ. Then τ(yi) = T because of the clause consisting only of yi (line 19), and

so each xσ,γ occurring in a clause with yi (line 21) must be true, which means that

a very fine morphism f ∗ can be found by setting f (σ) = γ iff τ(xσ,γ) = T such

that f ∗ is consistent with D[i].

The discussion up to this point establishes that VFMC reduces to 2SAT, which

we already knew.

Now suppose f ∗ is inconsistent with D[i] = 〈a1 · · · an, b1 · · · bn〉. This means

that there exists a symbol aj (1 ≤ j ≤ n) for which f (aj) 6= bj. Assuming all clauses

of the form (xa,b ∨ xa,c) in φ are satisfied (it is always possible to satisfy the subset

100

consisting of clauses of that form), this means that xaj,bj must be false. In this case

it is possible to set yi to false, which makes all clauses (xaj,bj ∨ yi) true (1 ≤ j ≤ n).

In other words, it is always possible to find a truth assignment for which at most

one clause involving yi is not satisfied. We have just shown that if an optimal

very fine morphism (one that is inconsistent with a minimal number of samples

in D) is inconsistent with m elements of D, then an optimal truth assignment for

φ leaves at most m clauses unsatisfied.

Going in the opposite direction, suppose that τ is a truth assignment for φ

that leaves m clauses unsatisfied. We can assume w. l. o. g. that any τ satisfies

all clauses of the form (xa,b ∨ xa,c), since if it did not we could change it to do

so without increasing the number of unsatisfied clauses. Let f (σ) = γ just in

case τ(xσ,γ) = T. Because all clauses of the form (xa,b ∨ xa,c) are satisfied, f is a

partial function Σ → Γ. As in the previous discussion the number of unsatisfied

clauses in φ can be said w. l. o. g. to be equal to the number of variables yi for

which τ(yi) = F. It follows from the definition of the reduction that f ∗ will leave

the same number of clauses unsatisfied.

We have just proved the following result:

Theorem 3.5. Problem MIN-VFMC L-reduces to MIN-2SAT.

The name MIN-2SAT follows the terminology of Khanna et al. [1997a]; the prob-

lem also goes by the name MIN-2CNF-DELETION. Polynomial-time algorithms

with constant approximation ratios are not known for MIN-2SAT. At this point

the best known polynomial-time algorithms have poly-logarithmic approxima-

tion bounds [Klein et al., 1997]. It is not clear that a modification of the approxi-

mation algorithm for MIN-2SAT is effective for solving practical instances of MIN-

VFMC. A formulation of such an algorithm remains an open problem. A precise

101

characterization of the hardness of MIN-VFMC is another open problem [but see

Khanna et al., 1997a].

Minimizing symbol error rate appears to be an altogether more intricate prob-

lem. If it can be expressed in terms of constraint satisfaction at all, the constraints

involved are likely going to be considerably more complex than those encoun-

tered so far, since they would have to encode the fact that string edit distance

itself is based on an (easy) optimization. We conjecture that the decision version

of the optimization problem involving minimization of symbol error rate is also

NP-complete. This is the only problem of the five empirical risk minimization

problems introduced at the beginning of this section whose complexity has not

been fully established.

All other problems involving minimization of string or symbol error rate have

been shown to be quite hard. Efficient algorithms for exact solutions are not forth-

coming, and the existence of good approximation algorithms seems also unlikely.

In some cases we can turn to inefficient algorithms or efficient heuristics without

any performance guarantees. For small problem instances, exhaustive search is

an option, and greedy heuristics based on local search seem to work well when

exhaustive search is too expensive. The traditional approach based on classifier

learning can also be seen as a heuristic solution: in a preprocessing step an aligned

dictionary is produced, which is then used as an instance of the only empirical

risk minimization problem studied here that is known to be efficiently solvable,

namely minimization of prediction error on an aligned dictionary.

102

3.6 Conclusion

This chapter discussed machine learning of deterministic transducers. The gram-

matical inference algorithm OSTIA has a very inclusive concept class, but suf-

fers from many practical drawbacks. Traditional approaches to learning letter-

to-sound rules can be seen as inference procedures for same-length local trans-

ducers. They have many advantages compared with OSTIA, but are restricted to

same-length (aligned) data.

We showed that the traditional approaches are in a certain specific sense equiv-

alent to learning alphabetic substitutions using prediction error as loss. All for-

mal problems associated with those approaches have efficient solutions and rea-

sonable sample complexity, but the problem does not fall into the classical PAC

learning paradigm, since it generally requires agnostic learners. We believe that

efficient agnostic PAC learnability [Kearns et al., 1992] could be demonstrated.

By contrast, working with loss functions other than prediction error and/or

asking the learner to automatically discover alignments leads to difficult prob-

lems. Automatically discovering alignments has been conceptualized as learning

fine morphisms (alphabetic substitutions that may erase symbols), but the for-

mal question whether consistent hypotheses exist cannot be answered efficiently,

which means that neither PAC learning nor empirical risk minimization can be

made efficient. Agnostic learning of very fine morphisms under global loss func-

tions (not prediction error) is also difficult, but potentially amenable to approxi-

mations.

One can define a third class of morphisms of free monoids that extends the

very fine morphisms in another direction. These morphisms are of the form f ∗ :

Σ∗ → Γ∗ where f is a function Σ → Γ ∪ Γ2, i. e., each input symbols is mapped to

103

one or two output symbols. This would be useful for automatically discovering

multi-phoneme symbols [Sejnowski, 1988; Sproat, 2001]. The formal properties

of the learning tasks associated with this new class of morphisms appear to be

very similar to those of the fine morphisms. In particular, we suspect that the

analogous consistency problem is also NP-complete.

To our knowledge, a formalization of the learning problems for the specific

application of letter-to-sound rules has not been attempted before. Without the

background of the present chapter, the traditional approaches based on classifier

learning may have seemed like ad hoc solutions, and while they are not always

very elegant, they have managed to concentrate on tractable and well understood

problems. In fact, the results from this chapter could even be viewed as argu-

ments in favor of the traditional approaches, since there are no obvious efficient

alternatives, and in some cases there probably never will be. Our discussion also

revealed a number of interesting open problems, which may yet lead to efficient

approximation algorithms. The most interesting problem is MIN-FMC using sym-

bol error as loss, which would be able to automatically discover alignments and

which employs a reasonable loss function. While MIN-FMC is difficult to solve ex-

actly, it would be worth while to investigate efficient approximation algorithms

and/or heuristics.

104

CHAPTER 4

LEARNING MEMORYLESS STOCHASTIC
TRANSDUCERS

4.1 Introduction

This chapter discusses a very restrictive class of stochastic transductions, so-called

memoryless transductions, which do not take any letter or phoneme context into ac-

count. Memoryless transductions are important because they are closely related

to string edit distance as well as morphisms of free monoids. Several key algorith-

mic tasks related to working with memoryless transducers, most notably param-

eter estimation, were discussed by Ristad and Yianilos [1996, 1998]. The goal of

this chapter is to explain, correct and extend their results, and also to introduce

the algebraic framework used for the generalizations discussed in Chapter 5.

4.1.1 Stochastic Transducers

Stochastic transducers are instances of weighted finite transducers [Berstel and

Reutenauer, 1988] where weights are interpreted as probabilities. Ordinary trans-

ducers realize rational relations, which can be thought of in terms of their char-

acteristic functions Σ∗ × Γ∗ → {0, 1}, where Σ and Γ are finite sets and whose

codomain is discrete. If R is the characteristic function of a rational relation, then

105

R(x, y) = 1 is taken to mean that strings x ∈ Σ∗ and y ∈ Γ∗ are related. The

deterministic transductions considered in Chapter 3 are special in the sense that

for all letter strings x ∈ Σ∗ there is at most one phoneme string y ∈ Γ∗ such that

R(x, y) = 1. In other words, they are essentially functions from Σ∗ to Γ∗, which

justifies the slightly different notation used earlier.

By contrast, stochastic transductions are best viewed as functions belonging

to type Σ∗ × Γ∗ → [0; 1], i. e. as having a continuous codomain. If P is a function

of this type, then call it a joint distribution over Σ∗ and Γ∗ if

∑
〈x,y〉∈Σ∗×Γ∗

P(x, y) = 1.

Given a joint distribution P the value P(x, y) is the probability of strings x ∈ Σ∗

and y ∈ Γ∗ being generated simultaneously, since P is a distribution over pairs of

strings. The joint distribution can potentially model all characteristics of x and y.

Call P a conditional distribution over Σ∗ provided

∀y ∈ Γ∗: ∑
x∈Σ∗

P(x, y) = 1.

As usual, the fact that P is a conditional distribution will be indicated by the

notation P(x | y) instead of P(x, y). Given such a conditional distribution P the

value P(x | y) is the probability of string x ∈ Σ∗ being generated from string

y ∈ Γ∗. Characteristics of y are not modeled by the conditional distribution P.

The symmetric case where P is conditional on x ∈ Σ∗ instead of y ∈ Γ∗ can be

defined analogously.

106

Stochastic transductions that model the relationship between strings of letters

and strings of phonemes can be used for predicting a phoneme string correspond-

ing to a given letter string. The overall approach and the roles that joint and con-

ditional models play in it are introduced in the following subsection. It provides

some of the background not only for the present chapter, but also for Chapter 5.

4.1.2 The “Noisy Channel” Metaphor

The deterministic transduction models from Section 3.3 share a deficiency whose

effects are most visible for very simple models that use a small context window:

the information about the output string comes exclusively from scanning the in-

put string. Intrinsic patterns in the output language (the second projection of the

transducer) are modeled only very indirectly. In the context of letter-to-sound

conversion, take a word like 〈committed〉 /k@mIt@d/ and assume a very simple de-

terministic transduction model that employs a one-letter window. Such a model

is clearly too simple, as it cannot possibly map the orthographic form 〈committed〉

to its reference pronunciation. The best output – in the sense of minimizing pho-

neme error rate (see Section 2.3.3) – this model could ever produce is /k@mmItt@d/,

which is highly improbable as a phonemic form of a single English word. The

only way to improve the deterministic transduction models considered so far is

to use more input context for prediction. Using a sufficient amount of input con-

text is certainly a good idea; however, one can also look for more direct ways of

ensuring that the predicted output falls within the range of what is usual, custom-

ary and reasonable. Phonemic strings like /k@mmItt@d/ are arguably unusual and

should not be predicted if better alternatives are available.

107

The deterministic transduction model can be augmented straightforwardly as

follows: instead of predicting a single transcription symbol for each input win-

dow the scanner examines, it predicts several weighted alternatives. In general,

the output the transducer produces on a given input is no longer a single string,

but a finite language (more precisely, if the alternatives have weights the output

is a finite string-to-weight mapping). For the example 〈committed〉 it would be

reasonable to assume that the one-letter input window 〈m〉 can be mapped either

to /m/ or to the empty string, and similarly for 〈t〉. The output of the transdu-

cer would then be the set {/k@mmItt@d/, /k@mItt@d/, /k@mmIt@d/, /k@mIt@d/}. An

additional subsequent component could then pick the most plausible of these al-

ternatives, which would presumably be the reference pronunciation /k@mIt@d/. In

general, if the transducer produces a weighted set of alternatives, a subsequent

component would rescore those alternatives on the basis of their existing weights

and some intrinsic measure of goodness. The overall output string is the one

with the “best” weight after rescoring. Rescoring has been used by a few authors,

including Jiang et al. [1997] and Chotimongkol and Black [2000], and typically

involves phonemic n-gram models, also known as n-phone models.

We write T(s; l) for the score the letter-to-sound transducer assigns to the out-

put string s on input l. In practice the rescoring approach often takes the following

form:

s? = argmax
s

T(s; l)× R(s).

R(s) is the score assigned to the phoneme string s by the rescoring component. We

assume w. l. o. g. that selecting the overall output amounts to maximizing (rather

than minimizing) the combined score. When an n-gram model is used for rescor-

ing, then R is in fact a probability distribution over phoneme strings, though this

108

is not required in general. If the letter-to-sound transducer is based on a classi-

fier that outputs a probability distribution over the set of classes instead of the

single most likely class, then T too is a probability distribution (conditional on l)

over phoneme strings. However, it should be clear that the rescoring approach

is an ad hoc solution even if both T and R are probability distributions, since

s 7→ T(s; l)× R(s) is generally not a proper probability distribution.

A solution that has clear interpretation in terms of probabilities can be ob-

tained by interpreting T not as a probability distribution over s conditional on l,

but as probability distribution over l conditional on s. Then T can be reinterpreted

as a model of a noisy channel, and R as a model of the source that generated the

signal transmitted through the channel. A slight change of notation might be

helpful: let Psrc (replacing R) represent the source model and Pchn (replacing T)

the source-conditional channel model. In other words, we want to maximize the

value of Pchn(l | s) × Psrc(s) across different phonemic strings s. By Bayes’ The-

orem, the above expression gives rise to a proper joint probability distribution,

unlike the rescoring approach. This joint distribution corresponds to a genera-

tive process whereby first a phoneme string s is generated by sampling from the

distribution Psrc, and then a letter string l is generated by sampling from the distri-

bution l 7→ Pchn(l | s). Using the terminology of “Information” Theory [Shannon,

1948], one could say that l is the distorted result of s being transmitted through a

noisy channel. Assigning a pronunciation to a letter string l can then be seen as

recovering (“decoding”) the most plausible phoneme string s that gave rise to l.

We shall assume for the moment that the most plausible phoneme string is given

by

s? = argmax
s

Pchn(l | s)× Psrc(s).

109

Call the joint distribution 〈l, s〉 7→ Pchn(l | s) × Psrc(s) over pairs of letter and

phoneme strings P2. When P2 can be realized by a finite transducer, we call it

a stochastic string-to-string transduction. Moreover:

s? = argmax
s

Pchn(l | s)× Psrc(s)

= argmax
s

P2(l, s)

= argmax
s

P2(l, s)
1

∑s P2(l, s)

= argmax
s

P2(s | l). (4.1)

Finding the optimal s? is often referred to as maximum a posteriori (MAP) decod-

ing, i. e., locating a mode of the “posterior” distribution obtained from a “prior”

density Psrc and “likelihood function” Pchn. (This terminology is confusing, be-

cause prior and posterior densities are usually distributions over parameters.)

We focus on stochastic rational transductions P2(x, y) that do not impose re-

strictions on the lengths of x and y. Otherwise, say if x = 〈x1, . . . , xn〉 and

y = 〈y1, . . . , yn〉 always had equal length n, it would be easy to define a joint

model P2 over a pair of strings

〈〈x1, . . . , xn〉, 〈y1, . . . , yn〉〉

in terms of a simpler model Ppairs over a single sequence of symbol pairs:

P2(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) = Ppairs(〈〈x1, y1〉, . . . , 〈xn, yn〉〉).

This is possible because the two representations are isomorphic under the func-

tion zip from Definition 3.2.

110

When working with aligned data, each letter string has by definition the same

length as the corresponding phoneme string. While it is possible to apply stochas-

tic transducers (Markov models) in such a setting [Rentzepopoulos et al., 1993;

Rentzepopoulos and Kokkinakis, 1996; Minker, 1996, see for example], it also

reintroduces the need to first obtain aligned data (see Section 3.3.2). Approaches

that involve training Markov models on aligned data are therefore similar to

classifier-based approaches, with which they have been grouped in Section 3.3.

We would like to reduce or eliminate the restriction that requires aligned training

data. While the stochastic approach allows that fairly straightforwardly, it raises

additional problems for parameter estimation.

There are several other fundamental issues one has to address before adopt-

ing an approach based on stochastic transductions. The following problems ex-

tend the three Ferguson–Rabiner problems for Hidden Markov Model (HMMs)

[Rabiner, 1989]:

1. First of all, the general structure of the model should be determined. All

models considered here can be represented by stochastic rational transdu-

cers. In the remainder of this chapter, we describe Ristad and Yianilos’s

[1998] memoryless transducers, whose topology is fixed a priori. In Chap-

ter 5 the state graphs of the transducers can take on any shape, but we will

assume that once a particular topology has been chosen it remains fixed. In

other words, we are not concerned with model induction, selection or merg-

ing [Stolcke and Omohundro, 1993].

2. We are especially interested in joint models P2 (or conditional models Pchn)

whose parameters can be estimated from unaligned data. The approaches

we will discuss involve (more or less explicitly) a joint model P3 on triples

111

of the form 〈a, x, y〉where x is a letter sequence, y a phoneme sequence, and

a an alignment of x and y. The joint probability P(x, y) of a particular letter

sequence x corresponding to a particular phoneme sequence y then arises

by marginalization P2(x, y) = ∑a P3(a, x, y), involving a summation over all

alignments of x and y if we want to evaluate the joint mass function P2. How

can this computation be done efficiently? We call this question Problem 2,

because its solutions appear in Section 4.2 and Section 5.2, for memoryless

and general stochastic transducers, respectively.

3. The models should be parameterized in such a way as to allow for efficient

estimation of their parameters. This is generally difficult for conditional

models, and so we will focus on joint models. The parameter estimation

problem will be known as Problem 3, as it is discussed in Section 4.3 for

memoryless transductions and in Section 5.3 for the general case.

4. The previous problem raises an immediate follow-up question: how do we

turn a joint letter/sound model P2 into a conditional model Pchn? Since a

conditional probability can be expressed as a joint probability divided by a

marginal probability like, for example, in equation (4.1), deriving a condi-

tional model from a joint model usually requires first deriving a marginal

model. This task is known as Problem 4, since it appears in Section 4.4 and

Section 5.4.

5. Finally, approaches based on stochastic transduction must somehow ad-

dress the decoding problem, which we refer to as Problem 5. For memo-

ryless transductions this is discussed in Section 4.5, and the general case is

the topic of Section 5.5.

112

4.1.3 Memoryless Stochastic Transducers

In the rest of this chapter we summarize and extend the approach laid out by

Ristad and Yianilos [1996, 1998] and develop the terminology and background

for Chapter 5. The key simplifying assumption of the present approach is that

the stochastic transducer that realizes the joint distribution on letter strings and

phoneme strings is completely memoryless, i. e., has a trivial one-state topology.

In this respect it is very similar to transducers that realize morphisms of free

monoids (see Section 3.4), but it is nondeterministic and allows the empty input

string to be mapped to non-empty output strings. Since the transducer topology

is fixed and trivial, we could in principle omit any references to transducer states;

however, as the next chapter generalizes this approach to non-trivial topologies,

the additional dependency on machine states should be kept in mind.

A joint letter/sound model P2 assigns probability P2(x, y) to a letter string x

and a phoneme string y. The fact that P2 is memoryless means that no letter-

context or phoneme-context is taken into account, which makes this special case

similar to the one-letter local transducers of the sort discussed in Section 3.3.

Ristad and Yianilos [1998] formulate a joint model corresponding to the follow-

ing memoryless generative process. Given two finite nonempty sets (alphabets) Σ

and Γ, define a set Ω = ((Σ ∪ {ε})× (Γ ∪ {ε}))−{〈ε, ε〉} of basic edit operations.

Generate x ∈ Σ∗ and y ∈ Γ∗ in parallel, starting initially with l ← ε and s ← ε.

Repeat the following process: (*) Draw ω from the set Ω ∪ {#}with probability θ.

If ω = #, stop; i. e., # is a terminating symbol, and we must require θ(#) > 0 to

ensure that the process terminates eventually. Otherwise it must be the case that

ω = 〈σ, γ〉 for some σ ∈ Σ ∪ {ε} and γ ∈ Γ ∪ {ε}. Append σ to x and γ to y, and

repeat from (*).

113

Equivalently, one can view the generative process as producing an alignment

a ∈ Ω∗ from which the strings x and y are projected. Following Mohri [2002a],

one can formally define the notion of alignment in terms of a sequence a ∈ Ω∗

of basic edit operations (insertions, deletions, substitutions). Let πi be the ith

projection of an n-tuple z = 〈z1, . . . , zn〉, i. e., πi(z) = zi. Note that π1 gives rise to

a fine morphism π∗1 : Ω∗ → Σ∗ (see page 79), and similarly for π2.

Definition 4.1 (Alignment). An alignment a of two strings x ∈ Σ∗ and y ∈ Γ∗ is

an element of Ω∗ = (((Σ ∪ {ε})× (Γ ∪ {ε}))−{〈ε, ε〉})∗ such that π∗1(a) = x and

π∗2(a) = y. Moreover, let h : Ω∗ → Σ∗ × Γ∗ be the function a 7→ 〈π∗1(a), π∗2(a)〉,

i. e., h(a) = 〈x, y〉 whenever a is an alignment of x and y.

A memoryless model P1 over Ω∗ corresponding to the generative process de-

scribed before is easy to define. Let a = 〈a1, . . . , an〉 be an element of Ω∗. The

generative process produces the alignment a with probability P1(a | θ), which is

defined to be (note the presence of the terminating symbol #)

P1(a | θ) =

(
n

∏
i=1

θ(ai)

)
θ(#). (4.2)

The ((|Σ| + 1) × (|Γ| + 1))-dimensional parameter vector θ is treated as a func-

tion Ω ∪ {#} → [0; 1] throughout this discussion. We require θ(#) > 0 and

∑ω∈Ω∪{#} θ(ω) = 1.

Since generating an alignment a implicitly generates a pair of strings h(a), one

can make this explicit by defining a model P3 over Ω∗ × Σ∗ × Γ∗ as follows:

P3(a, x, y | θ) =

P1(a | θ) if h(a) = 〈x, y〉

0 otherwise
(4.3)

114

The model P2 on Σ∗ × Γ∗ which we are ultimately interested in arises through

marginalization of P3 by summing over all alignments of x and y:

P2(x, y | θ) = ∑
a∈Ω∗

P3(a, x, y | θ) (4.4)

In other words, the probability of a string x corresponding to a string y is the to-

tal probability of all alignments of x and y. The basic model P1 (or, equivalently,

P3) defines the probability of one alignment. However, unlike in computational

biology [Durbin et al., 1998], we are rarely interested in knowing the probability

of a single alignment, which could be obtained by evaluating P1 or P3. Instead we

may want to evaluate P2(x, y) for given strings x and y, which involves comput-

ing a sum over exponentially many alignments in the worst case. Evaluating the

mass function P2 is analogous to the first of the Ferguson–Rabiner problems for

HMMs [Rabiner, 1989]. We address this problem in Section 4.2.

The situation is equally tricky for parameter estimation, which is similar to

Rabiner’s [1989] Problem 3. The problem is that we want to work with unaligned

training data, i. e., we can only observe examples of co-occurring 〈x, y〉 pairs, but

not their alignments. This means that we have to estimate the parameters θ –

the probabilities of edit operations, which naturally belong to P1 – in terms of

observations that we assume were generated by the model P2 derived from P1.

Parameter estimation under these circumstances is discussed in Section 4.3.

Rabiner’s [1989] Problem 2 concerns decoding, in this case, finding the most

plausible alignment and/or the best output string. We discuss issues concerning

decoding in Section 4.5. The models used during decoding are often conditional

models, or are joint models derived from a conditional channel model and a uni-

variate source model, as described above. We are therefore faced with a fourth

115

problem that has no direct analog in the HMM literature, namely obtaining con-

ditional and/or marginal models from a joint model. The reason this question

never arises in conjunction with HMMs is that HMMs are usually not conceptual-

ized as transducers realizing joint models [there are exceptions, however, most

notably Jelinek, 1997 and Manning and Schütze, 1999]. Marginalization and con-

ditionalization of joint models are discussed in Section 4.4.

4.2 Evaluating the Mass Function of a Joint Model

This section discusses the issue of computing the value P2(x, y) of the joint mass

function P2 for a specific pair of strings 〈x, y〉. As mentioned above, this requires

a summation over exponentially many alignments of x and y in the worst case.

The exact number of possible alignments of two strings x and y as defined in Def-

inition 4.1 is given by the Delannoy number D(|x|, |y|). The Delannoy numbers

[Sloane, 1996–2003, A8288; see also Banderier and Schwer, 2002 for an overview

and history] are defined in terms of the recurrence

D(a, 0) = 1,

D(0, b) = 1,

D(a, b) = D(a− 1, b) + D(a, b− 1) + D(a− 1, b− 1). (4.5)

This recurrence resembles Pascal’s formula for the binomial coefficients, except

for the presence of the second additive term. Efficient algorithms for evaluating

recurrences of this sort involve the use of dynamic programming [see for example

Cormen et al., 1990, ch. 16]. In fact, the straightforward dynamic programming

algorithm for evaluating the Delannoy number D(|x|, |y|) can be used as the basis

116

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A008288

for the algorithms that sum over the D(|x|, |y|) many alignments of the strings x

and y in the computation of P2(x, y).

4.2.1 The Generic Forward Algorithm

The classical dynamic programming algorithm for computing P2(x, y) is analo-

gous the Forward step of the Forward-Backward algorithm for Hidden Markov

Models (HMMs) [see Jelinek, 1997; Durbin et al., 1998]. We present the algorithm

for the Forward step for memoryless transducers in some detail here, for two

main reasons. First, although Ristad and Yianilos [1998, sec. 2.2] gave an ex-

plicit algorithm, which they call FORWARD-EVALUATE and which our algorithm

is based on, their presentation contains mistakes. Second, our version of the For-

ward algorithm abstracts away from certain details of the algebraic operations

on edit costs or probabilities. We use this opportunity to introduce an algebraic

framework for weighted graphs and automata that will be used throughout the

remainder of this chapter.

We call the algorithm presented in this section the generic Forward algorithm.

It is a generalization both of Ristad and Yianilos’s [1998] algorithm FORWARD-

EVALUATE and of the standard dynamic programming algorithm for computing

string edit distances, including the Levenshtein distance [Wagner and Fischer,

1974; Kruskal, 1983].

Pseudocode for the generic Forward algorithm appears in Figure 4.1. Observe

that it mentions two binary operations ⊕ and ⊗, and two constants 0̄ and 1̄. Re-

placing the abstract binary operations by addition and multiplication on the non-

negative real numbers, and the abstract constants by the numbers zero and one,

respectively, yields the standard Forward algorithm.

117

1: � Input: strings x ∈ Σ∗, y ∈ Γ∗, cost function θ
2: 〈x1, . . . , xT〉 ← x
3: 〈y1, . . . , yV〉 ← y
4: α[0, 0] ← 1̄
5: for t ← 0 to T do
6: for v ← 0 to V do
7: if t > 0 ∨ v > 0 then
8: α[t, v] ← 0̄
9: end if

10: if t > 0 then � deletion
11: α[t, v] ← α[t, v]⊕ α[t− 1, v]⊗ θ(xt, ε)
12: end if
13: if v > 0 then � insertion
14: α[t, v] ← α[t, v]⊕ α[t, v− 1]⊗ θ(ε, yv)
15: end if
16: if t > 0 ∧ v > 0 then � substitution
17: α[t, v] ← α[t, v]⊕ α[t− 1, v− 1]⊗ θ(xt, yv)
18: end if
19: end for
20: end for
21: α[T, V] ← α[T, V]⊗ θ(#) � termination
22: return α

Figure 4.1: The generic Forward algorithm.

118

In general, however, the generic operations mentioned in Figure 4.1 can be

quite different from ordinary addition and multiplication. In fact, they only need

to obey a few axioms, namely those which characterize semiring algebras [Golan,

1992, 1999; Kuich, 1997; Głazek, 2002]. Semirings have been used in Natural Lan-

guage Processing in the work of Mohri, Pereira and Riley [for example Mohri,

1997; Pereira and Riley, 1997; Mohri et al., 2000] on weighted finite state ma-

chines, and they also play a role in context-free parsing algorithms [Goodman,

1998, 1999].

Formally, a semiring is an algebraic structure over a carrier set K, which is the

codomain of the parameter (cost) function θ : Ω ∪ {#} → K in the general case.

Semirings are defined as follows.

Definition 4.2 (Semiring). A semiring is an algebraic structure 〈K,⊕,⊗, 0̄, 1̄〉with

the following properties:

1. 〈K,⊕, 0̄〉 is a commutative monoid;

2. 〈K,⊗, 1̄〉 is a monoid;

3. 0̄ is a two-sided annihiliator for ⊗, in other words, a× 0̄ = 0̄ = 0̄× a for all

a ∈ K;

4. ⊗ distributes over ⊕ on both sides, in other words, we have both a ⊗ (b ⊕

c) = (a⊗ b)⊕ (a⊗ c) and (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a) for all a, b, c ∈ K.

(The name semiring is due to the fact that this structure resembles a unit ring, ex-

cept that the presence of additive inverses is not required. Because of that, semir-

ings are also known as “rigs”, a pun on “rings without negation”.)

119

The multiplication symbol ⊗ may be omitted if no confusion can arise. Fur-

thermore, define a0 = 1̄ and an = a ⊗ an−1 for n > 0. As usual, (·)n has the

highest precedence, and ⊗ has precedence over ⊕.

Intuitively, a semiring allows us to summarize the weights of the edges along

a path by ⊗-multiplying them. Since the edges of a path appear in a certain order,

⊗ is associative (there is no tree structure on the edges), but not commutative

(order of appearance matters). Also, finite sets of paths with common end points

can be summarized by ⊕-adding together individual paths. As the members of

a set are unordered, the ⊕-addition operation is associative and commutative.

Distributivity of ⊗-multiplication over ⊕-addition means that a finite set of paths

can be extended on either side by a path, and the effect is the same as extending

each path in the set. When used to summarize weighted graphs, semirings are

also known as path algebras.

Any (associative) unit ring is also a semiring, for example, the set Z of integers

under addition and multiplication. An even simpler example of a semiring is the

set N of natural numbers under addition and multiplication, which is not a ring

due to the lack of additive inverses. Two other semirings need to be explicitly

defined at this point.

1. The nonnegative real semiring R≥0
+,× = 〈{x ∈ R | x ≥ 0}, +,×, 0, 1〉 extends the

natural numbers and provides a framework for manipulating probabilities

[Mohri, 1997 mentions the real semiring without restriction to the nonneg-

ative reals; Goodman, 1999 defines his “inside semiring” over the nonneg-

ative reals plus ∞, which we will discuss later on]. To repeat what was

pointed out above, using the newly introduced terminology: the standard

Forward algorithm is the instantiation of the generic Forward algorithm in

the real semiring R≥0
+,×.

120

To compute the probability P2(x, y | θ), apply the standard Forward algo-

rithm to x, y and θ. The algorithm returns the (|x| + 1) × (|y| + 1) matrix

α (with indices starting at 0), whose last entry α[|x|, |y|] equals P2(x, y | θ).

More generally, α[m, n] is the probability (summed over all alignments, but

ignoring proper termination) of the prefixes 〈x1, . . . , xm〉 and 〈y1, . . . , yn〉.

The algorithm is not restricted to values from the interval [0; 1]. For example,

if θ(ω) = 1 for all ω ∈ Ω ∪ {#} then on termination α[a, b] contains the

Delannoy number D(a, b).

2. The structure Rmin,+ = 〈R ∪ {+∞,−∞}, min, +, +∞, 0〉, called the min–

plus or (real) tropical semiring, is used in the calculation of shortest paths in

weighted graphs, where the weight of a path is the sum of the weights of

its edges [see for example Mohri, 1997 for further applications in language

and speech processing]. Instantiating the generic Forward algorithm in this

semiring yields the classical dynamic programming algorithm for comput-

ing the string edit distance [see Kruskal, 1983, sec. 5 for an overview and a

discussion of the ‘remarkable history of multiple independent discovery’ –

at least nine times – of this algorithm; Mohri, 2002a shows how to compute

the Levenshtein distance slightly less naturally in the real semiring].

The algorithm computes the Levenshtein distance between strings x ∈ Σ∗

and y ∈ Σ∗ (note that the two alphabets are required to be identical in this

special case) when θ(s, ε) = θ(ε, s) = θ(s, t) = 1 and θ(s, s) = θ(#) = 0 for

all s, t ∈ Σ∗ such that s 6= t, i. e., insertions, deletions, and substitutions have

unit cost and exact matches have zero cost. When applying the algorithm

to x, y and this θ, the Levenshtein distance can be found in α[|x|, |y|] on

termination.

121

a : s a : t a : u

b : s b : t b : u

ε : s ε : t ε : u

ε : s ε : t ε : u

ε : s ε : t ε : u

a : ε a : ε a : ε a : ε

b : ε b : ε b : ε b : ε

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

Figure 4.2: Example of an alignment trellis for the string pair 〈ab, stu〉.

The similarity between the Forward algorithm for HMMs and the dynamic

programming algorithm for calculating the Levenshtein distance is pointed out

repeatedly in the literature [for example, Ristad and Yianilos, 1998; Jurafsky et al.,

2000; Clark, 2001]. However, it is the algebraic perspective that allows us to make

precise the intuition that these very similar algorithms are in fact instances of just

one generic procedure.

The generic Forward algorithm fills in a matrix α corresponding to a graph

(“trellis”) compactly representing all alignments of two strings. An example of

the alignment trellis for the string pair 〈ab, stu〉 is shown in Figure 4.2. The ver-

tices of this graph are labeled with indices into α, and its edges are labeled with

122

edit operations: horizontal edges correspond to deletions, vertical edges to inser-

tions, and diagonal edges to substitutions. The key loop invariant of the generic

Forward algorithm is this: when α[t, v] is computed, then α[t − 1, v], α[t, v − 1],

and α[t − 1, v − 1] already contain the respective ⊕-sums over all paths originat-

ing from (0, 0). The body of the inner loop then computes α[t, v] in terms of these

three values and the weights of its three incoming edges. The invariant holds

because the order in which the vertices of Figure 4.2 are explored by the generic

Forward algorithm is a topological ordering.

Note that there are only quadratically many vertices and edges in the dynamic

programming trellis for strings x and y with lengths |x| and |y|. The number of

vertices is simply (|x| + 1)(|y| + 1). The number of edges T(|x|, |y|) is given by

the recurrence [Sloane, 1996–2003, A83381]

T(a, 0) = a,

T(0, b) = b,

T(a, b) = T(a− 1, b) + T(a, b− 1)− T(a− 1, b− 1) + 3,

which is similar to the Delannoy recurrence (4.5), but which can be expressed

analytically by the simple formula

T(a, b) = 3 a b + a + b.

Since the generic Forward algorithm examines every edge and every vertex ex-

actly once, its running time is O(|x| |y|) [Wagner and Fischer, 1974, p. 172].

As Ristad and Yianilos [1998] point out, the space requirements of the For-

ward algorithm can be reduced from O(|x| |y|) to O(min(|x|, |y|)) when it is used

123

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A083381

to evaluate P2(x, y) and the intermediate values of the matrix α do not matter. Ob-

serve that the matrix α is filled in row by row, and column by column within each

row (this corresponds to one topological ordering of the trellis). But α[t, v] only

depends on α[t, v− 1] from within the same row, and α[t− 1, v] and α[t− 1, v− 1]

from the preceding row. Crucially, there is no dependency on any rows before

the immediately preceding row. This means that only two row vectors need to be

stored at any point. Secondly, if rows are bigger than columns, the matrix can be

transposed, i. e., explored column by column (this still corresponds to a topolog-

ical ordering of the trellis). So if all we care about is the value of P2(x, y), we do

not need to store the entire Forward matrix α. However, access to the full matrix

is helpful for parameter estimation, which is discussed in Section 4.3.

4.2.2 The Generic Backward Algorithm

The Forward algorithm calculates P2(x, y) by examining all combinations of pre-

fixes of x and y. A similar algorithm – the so-called Backward algorithm – applies

to the symmetric case involving all suffixes of x and y. A generic version of the

Backward algorithm appears in Figure 4.3; the only difference compared with

Ristad and Yianilos’s [1998] algorithm BACKWARD-EVALUATE is that concrete op-

erations on reals have been replaced with abstract semiring operations. As before,

strings x and y are viewed as tuples whose indices start at 1, and the result β is a

(|x|+ 1)× (|y|+ 1) matrix with indices starting at 0.

The generic Backward algorithm employs a similar dynamic programming

scheme as the generic Forward algorithm, but explores the trellis in reverse. The

124

1: � Input: strings x ∈ Σ∗, y ∈ Γ∗, cost function θ
2: 〈x1, . . . , xT〉 ← x
3: 〈y1, . . . , yV〉 ← y
4: β[T, V] ← θ(#) � termination
5: for t ← T to 0 step −1 do
6: for v ← V to 0 step −1 do
7: if t < T ∨ v < V then
8: θ ← 0̄
9: end if

10: if t < T then � deletion
11: β[t, v] ← β[t, v]⊕ θ(xt+1, ε)⊗ β[t + 1, v]
12: end if
13: if v < V then � insertion
14: β[t, v] ← β[t, v]⊕ θ(ε, yv+1)⊗ β[t, v + 1]
15: end if
16: if t < T ∧ v < V then � substitution
17: β[t, v] ← β[t, v]⊕ θ(xt+1, yv+1)⊗ β[t + 1, v + 1]
18: end if
19: end for
20: end for
21: return β

Figure 4.3: The generic Backward algorithm.

125

Backward trellis is identical to the corresponding Forward trellis – see the exam-

ple in Figure 4.2 – except that the directions of all edges are reversed (correspond-

ing Forward and Backward trellises are in fact isomorphic as graphs). Likewise, a

topological ordering of the Backward trellis can be obtained by reversing a topo-

logical ordering of the Forward trellis. The generic Backward algorithm uses such

a topological ordering to fill in the Backward matrix β: it explores the Backward

trellis in reverse row-by-row order, and reverse column-by-column order within

each row. Correctness of the generic Backward algorithm also mirrors the analo-

gous arguments for the generic Forward algorithm.

In the nonnegative real semiring the Backward algorithm can be used to cal-

culate suffix probabilities, including β[0, 0] = P2(x, y). When all we are interested

in is calculating P2(x, y), the Forward and the Backward algorithm are equally

suitable. They do, however, have uses beyond evaluating the probability mass

function P2, as they can be combined to compute the conditional probability of an

edit operation occurring in an alignment of two strings, which plays an important

role for parameter estimation. We turn to this in the following section.

4.3 Estimating the Parameters of a Joint Model

So far we have identified the joint distribution P2 (4.4) as our primary working

model and shown how to compute P2(x, y | θ) for a given pair of strings 〈x, y〉 and

a given parameter vector θ. We now turn to the question of finding a parameter

vector θ̂ which maximizes the quantity P2(x, y | θ) for a given pair of strings 〈x, y〉.

In other words, we want to maximize the likelihood function

θ 7→ P2(x, y | θ)

126

in order to find the maximum likelihood estimate (MLE) θ̂.

Parameter estimation is complicated by the fact that P2 derives from the basic

underlying model P1 (4.2), which is stated in terms of alignments. But alignments

are generally not observable. When an unaligned pair of strings 〈x, y〉 is observed,

its sampling distribution is P2, not P1. It is clear that an alignment a ∈ Ω∗ contains

more information than a corresponding tuple of strings 〈x, y〉 ∈ Σ∗ × Γ∗, as evi-

denced by the fact that the function h : Ω∗ → Σ∗ × Γ∗ introduced in Definition 4.1

is many-to-one, since it forgets alignment details and only retains the identities of

the aligned strings. Therefore a sample 〈x, y〉 ∈ Σ∗ × Γ∗ from P2 generally corre-

sponds to many samples a ∈ Ω∗ from P1, namely the set {a ∈ Ω∗ | h(a) = 〈x, y〉}.

On the other hand, maximum likelihood parameter estimation for P1 is straight-

forward.

In sum, we have the following situation: parameter estimation for P2 would

be easy if alignments could be observed, but alignments generated by P1 are

purposely obliterated in the derivation of P2. It is useful to think of this as a

so-called missing data problem and to use the Expectation Maximization (EM) al-

gorithm [Dempster et al., 1977; McLachlan and Krishnan, 1997] for maximum

likelihood estimation. In the terminology of the EM algorithm, P1 is the complete-

data specification and P2 the incomplete-data specification. They are directly related

through the function h from Definition 4.1, and indirectly through P3, as follows:

P2(x, y | θ) = ∑
a∈Ω∗

h(a)=〈x,y〉

P1(a | θ) = ∑
a∈Ω∗

P3(a, x, y | θ)

The EM algorithm is a general method for maximizing the incomplete-data likeli-

hood. It is most useful in situations where maximizing the complete-data likeli-

hood is comparatively easy, as is the case here.

127

4.3.1 Derivation of EM Updates

The key contribution of Ristad and Yianilos [1998] is the explicit formulation of

a parameter estimation algorithm for memoryless stochastic transducers, which

is as an instance of the EM algorithm. However, Ristad and Yianilos [1998] do

not explicitly derive their parameter estimation algorithm from the generic EM

algorithm. The goal of this section is to fill in some of the details of this deriva-

tion, which closely resembles the derivation of the Forward-Backward algorithm

[Jelinek, 1997; Durbin et al., 1998].

Ristad and Yianilos [1998, p. 524] themselves point out that the ‘applicability

of EM to the problem of optimizing the parameters of a memoryless stochastic

transducer was first noted by Bahl, Jelinek and Mercer’ in 1975. Algorithms for

solving this problem may have been part of the community folklore for quite

some time, as earlier authors who worked with stochastic transducers – for ex-

ample Parfitt and Sharman [1991] or Gilloux [1991]; see also the references cited

by Clark [2001, sec. 6.5.1] – must have had some way of obtaining parameter val-

ues for their models. For example, Parfitt and Sharman [1991] mention that they

used the Forward-Backward algorithm during training, but do not provide fur-

ther details. Gilloux [1991] briefly discusses the computation of optimal paths

and mentions within the same paragraph that ‘the learning algorithm applica-

ble to general [Markov] models remains valid’, which suggests that he may have

used Viterbi training or EM (Forward-Backward) training.

128

EM parameter re-estimation involves maximizing the expected complete-data

log-likelihood. Given a single observation 〈x, y〉, the EM algorithm iteratively re-

estimates the parameter vector θ, constructing a sequence θ(0), θ(1), . . . that con-

verges to a stationary point – usually a mode of the likelihood – under very gen-

eral conditions.

A single re-estimation step of EM maximizes (M) the expected (E) log-likeli-

hood of the complete-data specification, where the expectation is taken over the

conditional distribution of the missing data. Let y stand for the observed “incom-

plete” data and z the unobserved “missing” data. Together they make up the

complete data. In general (but shown only for the discrete case here), an EM re-

estimation step finds the parameter values which maximize a certain variant of

the complete-data likelihood. The complete-data log-likelihood will be referred

to as L, and the function being maximized is the conditional expectation of L,

usually called Q. A single re-estimation step takes the form

θ(n+1) = argmax
θ

Q(θ) = argmax
θ

∑
z

P(z | y, θ(n)) log P(y, z | θ). (4.6)

The EM algorithm, shown in Figure 4.4, simply iterates these updates until some

convergence criterion is met.

In the specific present case, the complete data are alignments a. The condi-

tional probability of the missing data is expressed in the usual way as a fraction

of the complete-data probability divided by the observed-data probability. An

observed sample is a string pair 〈x, y〉, whose sampling distribution is P2. The

re-estimation step in this specific case becomes

θ(n+1) = argmax
θ

∑
a∈Ω∗

P3(a, x, y | θ(n))
P2(x, y | θ(n))

log P1(a | θ).

129

1: θ(0) ← initial guess of parameter values
2: n ← 0
3: repeat
4: calculate the fixed parameters of function Q � so-called E step
5: θ(n+1) ← argmaxθ Q(θ) � M step
6: n ← n + 1
7: until convergence

Figure 4.4: The EM algorithm.

The conditional probability P3(a, x, y | θ(n))/P2(x, y | θ(n)) which the expectation is

taken over is abbreviated (by a slight abuse of notation) as P(a | x, y, θ(n)). With

all conventions in place, finding θ(n+1) means maximizing the function Q given

by

Q(θ) = ∑
a∈Ω∗

P(a | x, y, θ(n)) L(θ).

Suppose a = 〈a1, . . . , an〉 is a sequence of edit operations, i. e. an element of Ω∗.

Let C(ω, a) denote the number of times the edit operation ω occurs in a, and

extend this notation to include C(#, a) = 1 for all a ∈ Ω∗. The complete-data

log-likelihood L can now be rewritten like this:

L(θ) = log P1(a | θ)

= log

(
θ(#)

n

∏
i=1

θ(ai)

)

= log ∏
ω∈Ω∪{#}

θ(ω)C(ω,a)

= ∑
ω∈Ω∪{#}

C(ω, a) log θ(ω)

130

Note that this generalizes easily to more sophisticated distributions over Ω∗, es-

pecially if P1(a | θ) can be expressed as a simple product, which is the case for

Markov chains.

Incorporating the rearranged form of the complete-data log-likelihood into

the conditional expectation Q, the latter can then be simplified as follows:

Q(θ) = ∑
a∈Ω∗

P(a | x, y, θ(n)) log L(θ)

= ∑
a∈Ω∗

P(a | x, y, θ(n)) ∑
ω∈Ω∪{#}

C(ω, a) log θ(ω)

= ∑
ω∈Ω∪{#}

∑
a∈Ω∗

P(a | x, y, θ(n)) C(ω, a) log θ(ω)

= ∑
ω∈Ω∪{#}

γ(ω) log θ(ω)

A new piece of notation, γ(ω), was introduced on the last line using the substitu-

tion

γ(ω) = ∑
a∈Ω∗

P(a | x, y, θ(n)) C(ω, a) (4.7)

to group together all terms that do not depend on θ. This move is not just an arbi-

trary simplifying device, because γ(ω) can be interpreted as the expected number

of times ω occurs in an alignment of x and y. Moreover, this is the only term that

depends on the sample 〈x, y〉 and can therefore hide the additional complexity in-

troduced when using multiple independent and identically distributed samples.

Furthermore, parameter estimation extends straightforwardly to general stochas-

tic transducers provided γ can be calculated efficiently, which will be the topic of

Section 5.3.

131

Setting aside for the moment the issue of how to compute γ even for the sim-

ple case of memoryless transducers, let’s turn to the problem of maximizing the

expected log-likelihood Q. We still wish to find

θ(n+1) = argmax
θ

∑
ω∈Ω∪{#}

γ(ω) log θ(ω)

subject to the normalization constraint ∑ω∈Ω∪{#} θ(ω) = 1 and keeping in mind

that θ is really a finite-dimensional vector. This constrained optimization problem

can be transformed into an unconstrained problem using the method of Lagrange

multipliers. Introduce an auxiliary function

Qaux(θ) = ∑
ω∈Ω∪{#}

γ(ω) log θ(ω) + λ

(
1− ∑

ω∈Ω∪{#}
θ(ω)

)

= λ + ∑
ω∈Ω∪{#}

(γ(ω) log θ(ω)− λ θ(ω))

and solve the system of equations (note that θ(ω) should be viewed as one com-

ponent of the finite-dimensional parameter vector θ)

∂

∂ θ(ω)
Qaux = γ(ω)

1
θ(ω)

− λ = 0

to obtain the maximizing θ(n+1)(ω) for all ω ∈ Ω ∪ {#}. The result is still depen-

dent on λ, which can be eliminated straightforwardly, since the only constraint is

proper normalization of θ(n+1). This leaves us with the following solution, which

forms the core of Ristad and Yianilos’s [1998] algorithm MAXIMIZATION-STEP:

θ(n+1)(ω) =
γ(ω)

λ
=

γ(ω)
∑ω∈Ω∪{#} γ(ω)

(4.8)

132

Using EM for parameter estimation is an elegant solution when alignments are

not known, because it deals properly with the uncertainty about the contribution

of an individual alignment to the total probability assigned to a pair of strings. If

alignments are known, parameter estimation is very straightforward, because no

random variables are involved and one can simply count how often a particular

edit operation occurs in an alignment. In practice, it may be tempting to cut

corners and pretend that alignments are known even when they are not. Instead

of computing the expectation of the log likelihood over all possible values of the

missing data z (the alignments), however improbable some of them may be, one

could concentrate on the k most probable values and treat them as though they

were part of the observed data (denoted by y in the EM re-estimation formula). For

k = 1 this is known as Viterbi training [see Bridle 1997 for a high-level discussion of

optimization methods for maximum likelihood training]. Compare the following

parameter update for Viterbi training with equation (4.6) for EM:

θ(n+1) = argmax
θ

log P(y, ẑ | θ) where ẑ = argmax
z

P(z | y, θ(n)).

The imputed information ẑ is treated as observed along with the regular observed

data y, with the effect that the parameter update on the left is now very straight-

forward. For the concrete application of stochastic memoryless transducers this

means finding the best alignment â of two strings, which is very similar to the

decoding problem discussed in Section 4.5. Whether or not Viterbi training is a

useful approximation depends on the concrete circumstances. This issue will be

investigated empirically in Section 6.6.

133

4.3.2 Calculating Expected Counts

We still need to address the issue of computing the expected parameter counts γ,

which is part of the so-called E step of the EM algorithm. This may at first seem

to involve summing over an infinite number of alignments a ∈ Ω∗ according to

equation (4.7). However, since P3(a, x, y) is zero unless a is an alignment of x and

y, the summation is really only over the set h−1(x, y) = {a ∈ Ω∗ | h(a) = 〈x, y〉}

of all alignments of x and y. So the equation for γ simplifies to

γ(ω) =
1

P2(x, y) ∑
a∈h−1(x,y)

P1(a) C(ω, a). (4.9)

Calculating γ(ω) simultaneously for all ω ∈ Ω ∪ {#} involves a dynamic pro-

gramming scheme very similar to the Forward or Backward algorithm. The key

insight is to rearrange the computation to obtain the contribution of each edit op-

eration in its specific context. For a concrete example, consider again the trellis

graph from Figure 4.2, and suppose we want to compute γ(ε : t). We had already

seen in the previous section how to calculate the normalizing term P2(ab, stu) of

the conditional distribution. All that remains to do is to calculate the uncondi-

tional expectation of the edit operation ε : t. There are three edges labeled ε : t in

the trellis which contribute to some of the alignments of ab and stu. Their contri-

butions can be considered in isolation and accumulated by the algorithm. In other

words, the unconditional expectation can be expressed in terms of the expected

counts of edges, rather than the expected counts of edit operations. This is easy

to do in an acyclic graph, since each edge occurs at most once in any successful

path, so its expected count is simply the total probability of all paths it is a part of.

For instance, the total probability of all paths the go through the edge labeled ε : t

134

1: calculate α using the Forward algorithm
2: calculate β using the Backward algorithm
3: p ← β[0, 0] � normalizing term, assumed to be nonzero
4: for each ω ∈ Ω do
5: γ(ω) ← 0
6: end for
7: γ(#) ← 1
8: for each edge e in the Forward/Backward trellis do
9: ω ← the label of e

10: s ← the source state of e
11: t ← the target state of e

12: γ(ω) ← γ(ω) +
α[s] θ(ω) β[t]

p
13: end for

Figure 4.5: Calculating expected counts of basic edit operations for memoryless
transducers.

from (1, 1) to (1, 2) is the probability of reaching the vertex labeled (1, 1) through

any path, then traversing the edge in question, and then going from (1, 2) to the

final state via any path. But the prefix probability of reaching (1, 1) from the start

state (0, 0) is just α[1, 1] calculated by the Forward algorithm, and the suffix prob-

ability of reaching the final state from (1, 2) is β[1, 2] calculated by the Backward

algorithm.

The calculation of expected counts of edit operations in Ω ∪ {#} is sketched in

Figure 4.5. Note that the expected count of the terminating symbol # is necessarily

one, since it occurs precisely once in every alignment generated by P1 (4.2). The

algorithm simply explores all edges in any order and accumulates the expected

counts of their labels, which are edit operations in Ω.

135

Ristad and Yianilos’s [1998] algorithm EXPECTATION-STEP iterates over edges

in a specific order, namely in topological order of their source vertices. It is there-

fore possible, as they note, to combine this algorithm with the Forward or Back-

ward algorithm. We do not include another version of their algorithm here, since

no changes to Ristad and Yianilos’s [1998] presentation are necessary, nor are gen-

eralizations possible, as there is no meaningful notion of expected values in arbi-

trary semirings. Instead, the natural place for expected values may be in a semi-

module over the nonnegative real semiring [Eisner, 2001]. We will return to this

issue in Section 5.3, when we consider parameter estimation for general stochas-

tic transducers. It will become clear there that the present method of calculating

expectations is applicable in the general case too.

In conclusion, the parameter of memoryless stochastic transducers can be esti-

mated by the following instance of the EM algorithm: in the so-called E step, the

expected counts γ(ω) of the edit operations ω ∈ Ω ∪ {#} are computed using

the algorithm in Figure 4.5; in the M step, these expected counts are normalized

and become the re-estimated parameter values, as motivated by equation (4.8).

While Ristad and Yianilos [1998] give explicit algorithms for EM-style parameter

estimation, they do not provide much of an explanation or an explicit derivation

of their algorithms from the abstract formulation of EM. The present section filled

in those details, and also forms the background for Section 5.3.

4.4 Obtaining Conditional Models

We have seen procedures for evaluating the probability mass function of a joint

model and for estimating its parameters. But in many applications we would

136

sometimes like to work with conditional models instead of joint models. For ex-

ample, the abstract channel model Pchn discussed on page 109 is a conditional

model which can be combined with a source model Psrc to form a joint model.

For letter-to-sound conversion, we might want to combine a conditional channel

model with a phonotactic source model, such as an n-phone model.

Depending on the application, directly estimating the parameters of a condi-

tional model may be desirable; however, discriminative training of conditional

models is much less straightforward than parameter estimation of joint mod-

els, and we do not propose to deal with it here. Instead we focus on the sim-

pler problem of conditionalizing a given joint model. In the specific case of me-

moryless transductions this means, given a stochastic transducer realizing P2 :

Σ∗ × Γ∗ → R≥0, how does one obtain a stochastic transducer realizing the func-

tion 〈x, y〉 7→ P2(x, y)/ ∑x′ P2(x′, y)?

Ristad and Yianilos [1998] never even mention this question. This is not sur-

prising, as it does not seem to be discussed in the traditional HMM literature either.

The present section shows that it is always possible to derive a memoryless con-

ditional model from a memoryless joint model. The analogous statement for gen-

eral stochastic transducers is false, as discussed in Section 5.4. As a side benefit,

we also obtain the corresponding marginal distributions.

4.4.1 Evaluating the Mass Function of a Conditional Model

While the parameter vector θ of a joint model is itself a probability distribution

on Ω ∪ {ε}, naively renormalizing it such that ∑σ θ(σ, γ) = 1 for all γ ∈ Γ ∪ {ε}

would not give rise to the desired conditional distribution on Σ∗ × Γ∗, because of

the special status of insertion and deletion operations.

137

Let’s start with the simpler problem of evaluating the conditional mass func-

tion, i. e., calculating the value of the following expression for fixed x and y:

P2(x, y | θ)
∑x′∈Σ∗ P2(x′, y | θ)

(4.10)

Computing the numerator of this fraction was discussed in Section 4.2 and will

be very familiar by now. Evaluating the denominator involves a summation over

the infinite set Σ∗ and therefore deserves special attention.

The following concrete example illustrates the general computation. Suppose

Σ = {s} and Γ = { f , g}, and θ is given as

θ(s, f) = 0.2, θ(ε, f) = 0.3,

θ(s, g) = 0.1, θ(ε, g) = 0.2,

θ(s, ε) = 0.1, θ(#) = 0.1.

Say we want to evaluate the denominator for y = f g, i. e., we need to compute

∑x′ P2(x′, f g | θ). This means evaluating P2 for every pair of strings in the set

{〈x′, f g〉 | x′ ∈ Σ∗}, or finding the total probability mass contained by P2 restricted

to this set. In the concrete example at hand we want to compute the infinite sum

P2(ε, f g) + P2(s, f g) + P2(ss, f g) + P2(sss, f g) + P2(ssss, f g) + · · · .

The stochastic transducer that accepts precisely the strings occurring in the terms

of this sum appears in Figure 4.6. (It is the result of composing the single-state

138

s: /0.1

s:f/0.2

 :f/0.3

s: /0.1

0.1
s:g/0.1

 :g/0.2

s: /0.1

Figure 4.6: A stochastic transducer realizing P2 restricted to {〈x′, f g〉 | x′ ∈ Σ∗}.

transducer realizing P2 with the identity transducer representing the string f g.

More on this in Chapter 5.) By consulting Figure 4.6 it is easy to check that

P2(ε, f g) = 0.3× 0.2× 0.1 = 0.006,

P2(s, f g) = ((0.2× 0.2) + (0.3× 0.1) + 3(0.1× 0.3× 0.2))× 0.1 = 0.0088,

P2(ss, f g) = 0.00446,

P2(sss, f g) = 0.00108,

P2(ssss, f g) = 0.000199.

The probability for longer strings x′ decreases despite a concomitant increase in

the number of paths that contribute to it. The sum must converge, since the set of

strings that contribute to it is a subset of Σ∗ × Γ∗, across which P2 sums to unity.

Therefore the infinite sum in this example must be greater, but not much greater,

than 0.020539.

The exact value of the infinite sum can be computed recursively. But first, note

that the edge labels are not important, since we need to sum over all paths without

139

attention to their labels. After removing edge labels and replacing multiple edges

between the same pair of source and target vertices we get the simple graph in

Figure 4.7. The sum of all paths through that graph is, however, still the same as

the sum of all paths through the transducer in Figure 4.6.

Computing this sum would be easy if the graph were acyclic. Whereas the

graph does have cycles, the only cycles it has are loops. Call such a graph almost-

acyclic. Note that the transducer representing the marginal probability at a single

point y is necessarily almost-acyclic: the string y is accepted by an acyclic automa-

ton, and its composition with the memoryless transducer realizing P2 is acyclic

except for the presence of arcs labeled with deletion operations, whose presence

is not affected by y. But since the memoryless transducer has a trivial one-state

topology, the only deletion arcs are loops, corresponding to the deletion loops of

the memoryless transducer.

Theorem 4.1. A graph is almost-acyclic iff it is isomorphic to a graph with an upper

triangular adjacency matrix.

This is a trivial generalization of the observation that a graph is acyclic iff its

states can be renumbered in such a way as to make its adjacency matrix strictly

upper triangular. We may therefore assume w. l. o. g. that a weighted directed

almost-acyclic graph is always represented by an upper triangular matrix.

In cases like the present example in Figure 4.7 the weight of a loop cannot

be unity, since such a loop corresponds to one or more deletion operations whose

total probability must be less than one because θ(#) > 0. Let M be the upper trian-

gular adjacency matrix of such a graph, and I the identity matrix with compatible

dimensions. Then I−M is triangular with no zeroes in its diagonal, and therefore

det(I −M) 6= 0, meaning I −M is invertible. The matrix inverse (I −M)−1 could

140

0.1

0.5

0.1

0.3

0.1

0.1

Figure 4.7: An unlabeled directed weighted graph that abstracts away from irrel-
evant details included in Figure 4.6.

be computed very easily using LU decomposition [Press et al., 1992, sec. 2.3] with-

out the need to explicitly compute the LU decomposition for the triangular matrix

I − M. But (I − M)−1 = M∗ [Fink, 1992, sec. 2.5], the closure of M, and so the

sum of all paths from the unique (w. l. o. g.) source state s to the unique (w. l. o. g.)

target state t is found in M∗[s, t]. However, real matrix inversion is a cubic time

algorithm whose full generality is not needed in this special case, though it will

be when we revisit these issues in Chapter 5.

While the single-source algebraic path algorithm for directed acyclic weighted

graphs (DAWGs) [Cormen et al., 1990, sec. 25.4] cannot be used directly for almost-

acyclic graphs like the one in Figure 4.7, it can easily be modified to accommodate

them, provided the infinite sums corresponding to the loops exist. The advantage

of this algorithm is that it runs in time linear in the number of vertices and edges

of the graph, like the Forward algorithm, which is in fact a special instance of

the algebraic path algorithm for DAWGs, as we shall see later. The vertices are

examined in topological order, i. e., from left to right for the graph in Figure 4.7.

141

Suppose w is the total weight of all paths through the graph excluding the loop

on the first state. Since that loop can be taken any number of times, the infinite

sum can be expressed in terms of w as

∑
x′

P2(x′, f g) = w + 0.1 w + 0.12 w + 0.13 w + · · ·

= w
∞

∑
i=0

0.1i

= w
1

1− 0.1
=

10
9

w.

The geometric series on the second line converges and can be expressed in closed

form as the fraction shown on the third line. This convergence result holds in

general, because the weight of the loop is always less than one, as noted above.

Moving on to the next state, we can write w = 0.5 w′ where w′ is the to-

tal weight of all paths starting from the second state and including the loop

there. Proceed recursively to bring the infinite sum into closed form, arriving

ultimately at

∑
x′

P2(x′, f g) =
1

1− 0.1
× 0.5× 1

1− 0.1
× 0.3× 1

1− 0.1
× 0.1

=
5

243

≈ 0.020576.

(4.11)

142

We have evaluated the denominator of (4.10) for y = f g. Using the joint prob-

abilities computed earlier, which occur in the numerator of (4.10), the correspond-

ing conditional probabilities are as follows:

P2(ε | f g) = 0.006000
243
5

= 0.2916,

P2(s | f g) = 0.008800
243

5
= 0.427680,

P2(ss | f g) = 0.004460
243

5
= 0.216756,

P2(sss | f g) = 0.001080
243

5
= 0.052488,

P2(ssss | f g) = 0.000199
243

5
= 0.0096714.

We can see that the probability that one of these five strings from Σ∗ corresponds

to, or was generated by, the string f g ∈ Γ∗ is more than 99.8%. The most likely

string in Σ∗ corresponding to f g is s, by a wide margin.

A generic algorithm that computes marginal weights in arbitrary semirings

must rely on being able to compute infinite summations like the geometric series

in the nonnegative real semiring. In an arbitrary semiring, a unary partial opera-

tion (·)∗ called closure may be defined for certain elements a ∈ K. When defined

for a, closure obeys the axiom

a∗ = 1̄⊕ (a⊗ a∗) = 1̄⊕ (a∗ ⊗ a). (4.12)

Recursively expanding the right-hand side gives us

a∗ = a0 ⊕ a1 ⊕ a2 ⊕ · · · =
∞⊕

i=0

ai.

143

Associativity and distributivity are required to hold for all sums, including any

infinite sums that may exist. We say that a semiring is closed if a∗ is defined for

all a ∈ K. The nonnegative real semiring is not closed, since (·)∗, the limit of the

infinite geometric series, is a partial operation a 7→ 1/(1− a) defined only on the

half-open interval [0; 1).

The generic single-source algebraic path algorithm for directed almost-acyclic

weighted graphs shown in Figure 4.8 is a straightforward generalization of al-

gorithm DAG-SHORTEST-PATHS presented by Cormen et al. [1990, sec. 25.4]. It

computes the matrix closure M∗ of an upper triangular adjacency matrix M over

a semiring in which the semiring closure operation (·)∗ is defined for all diagonal

elements of M. Using an adjacency matrix representation makes the presenta-

tion of the algorithm slightly easier. However, changing the representation of the

graph to employ adjacency lists – perhaps with a separate list of loops – is straight-

forward and results in a running time linear in the number of vertices and edges.

Everything is in place now for computing the marginal probability

∑
x′∈Σ∗

P2(x′, y)

for a fixed string y ∈ Γ∗. All we have to do is apply the single-source algebraic

path algorithm from Figure 4.8 to a simple graph corresponding to transducers

of the form shown in Figure 4.7. The marginal probability can then be found in

d[t], where t is the unique (w. l. o. g.) target state of the graph. Since we now can

evaluate the marginal probability, and we already knew how to evaluate the joint

probability, computing conditional probabilities of the form (4.10) is easy.

144

1: � Input: n× n adjacency matrix M of a weighted graph
Require: M is upper triangular

2: for i ← 1 to n do
3: d[i] ← 0̄
4: end for
5: d[1] ← 1̄
6: for i ← 1 to n do
7: d[i] ← d[i]⊗ (M[i, i])∗

8: for j ← i + 1 to n do
9: d[j] ← d[j]⊕ d[i]⊗M[i, j]

10: end for
11: end for
12: return d
Ensure: d[i] is the algebraic distance between vertex 1 and vertex i

Figure 4.8: The generic single-source algebraic path algorithm for almost-acyclic
weighted directed graphs.

4.4.2 Marginal Automata

In general, being able to evaluate the conditional probability for a fixed pair of

strings is not enough. We are looking for a way to represent the conditional dis-

tribution

〈x, y〉 7→ P2(x, y)× 1
∑x′∈Σ∗ P2(x′, y)

(4.13)

(call it C) as a stochastic transducer. This would be possible if there was a func-

tion R, represented by a stochastic automaton, for the reciprocal of the marginal

density, i. e.:

R(z, y) =

1

∑x′∈Σ∗ P2(x′, y)
if z = y

0 otherwise

145

The conditional distribution C (4.13) could then be expressed as C = P2 ◦R, where

◦ denotes composition of weighted transducers [Mohri et al., 1996; Pereira and

Riley, 1997] (see Chapter 5 for further details). The reciprocal marginal R can in

turn be computed from an unambiguous stochastic transducer representing the

marginal density by setting its parameters to their reciprocal values. For example,

if there was a stochastic automaton with parameter function δ : Γ ∪ {#} → [0; 1]

such that

∑
x′

P2(x′, 〈y1, . . . , yn〉) = δ(#)
n

∏
i=1

δ(yi)

for all 〈y1, . . . , yn〉 ∈ Γ∗, then replacing δ(γ) with 1/δ(γ) for all γ ∈ Γ ∪ {#}

would yield a stochastic automaton representing R.

As the discussion surrounding equation (4.11) has shown, the marginal prob-

ability, even though it is expressed as a sum over products, can generally be rep-

resented as a product. Observe that each state (except the added sink state) in

an automaton like the one in Figure 4.7 representing a marginal probability has

a loop whose weight is the sum of the weights of all deletion operations. That

means, each non-loop edge in that graph is preceded by a loop, and hence the

loops can be eliminated by pre-⊗-multiplying the parameters for the insertion

and substitution operations with the semiring closure of the total deletion weight.

This leads directly to an algorithm for constructing a stochastic automaton

realizing the marginal density y 7→ ∑x′ P2(x′, y) from a given transducer represen-

tation of P2. The pseudo-code listing appears in Figure 4.9. The algorithm works

in any semiring, provided the semiring closure operation is defined for the total

146

1: � Input: parameter function θ of a joint memoryless transducer
2: d ← 0̄ � total deletion weight
3: for each σ ∈ Σ do
4: d ← d⊕ θ(σ, ε)
5: end for
6: for each γ ∈ Γ do
7: δ(γ) ← θ(ε, γ) � marginal weight of γ
8: for each σ ∈ Σ do
9: δ(γ) ← δ(γ)⊕ θ(σ, γ)

10: end for
11: δ(γ) ← d∗ ⊗ δ(γ) � pre-multiply with the weight of the deletion loop
12: end for
13: δ(#) ← d∗ ⊗ θ(#)
14: return δ

Figure 4.9: The generic marginalization algorithm for memoryless transducers.

deletion weight d. Applying this algorithm to our running example yields the

following parameter function for the marginal automaton:

δ(#) = 1/9,

δ(f) = 5/9,

δ(g) = 3/9.

We can use this construction to remove the loops from the almost-acyclic

graph in Figure 4.7. The result, which appears in Figure 4.10, is a DAWG that

is equivalent in the sense that the sum over all paths weights, which is 42/93 =

16/729, is the same as the value calculated previously in equation (4.11) for the

almost-acyclic graph.

147

1/(1-0.1) 0.5 1/(1-0.1) 0.3 1/(1-0.1) 0.1

Figure 4.10: An acyclic graph which is equivalent to the almost-acyclic graph
from Figure 4.7.

It is easy to see that the parameter function δ of the marginal automaton is a

proper probability distribution. In general, suppose θ is a probability distribution

over a set of basic events partitioned into two disjoint sets C and D. Let d denote

the total probability mass of D. The total probability mass of C is therefore 1−

d, which when multiplied with d∗ = 1/(1 − d) equals unity. In other words,

θ can be turned into a probability distribution over C rather than over C ∪ D

by multiplying the probabilities of all basic events in C with 1/(1 − d). In the

marginalization algorithm, θ is defined over the set Ω ∪ {#}, D is the set of all

deletion operations, C is the set of all other operations (whose second projection

is the domain of δ), and d appears verbatim in the algorithm.

4.4.3 Conditional Stochastic Transducers

The marginal automaton is unambiguous: for each string y ∈ Γ∗ there is at most

one accepting path. Since the weight of a single path is the product of its edges,

the reciprocal weight is computed by the same automaton with all its weights

replaced by their reciprocals. Composing P2 with its reciprocal marginal automa-

ton finally gives us a transducer realizing the conditional distribution C (4.13).

Our conditionalization algorithm , which carries out these operations implicitly,

148

1: � Input: parameter function θ of a joint memoryless transducer
2: d ← 0 � total deletion weight
3: for each σ ∈ Σ do
4: d ← d + θ(σ, ε)
5: end for
6: r ← 1− d � r = 1/d∗

7: for each γ ∈ Γ do
8: t ← θ(ε, γ) � marginal weight of γ
9: for each σ ∈ Σ do

10: t ← t + θ(σ, γ)
11: end for
12: n ← r/t � n = 1/(d∗ t), the reciprocal of the marginal weight
13: � conditionalize θ
14: for each σ ∈ Σ ∪ {ε} do
15: θ(σ, γ) ← θ(σ, γ)× n
16: end for
17: end for
18: θ(#) ← r
19: return θ

Figure 4.11: The conditionalization algorithm for memoryless stochastic transdu-
cers.

is a straightforward extension of the marginalization algorithm. However, it cru-

cially relies on the presence of multiplicative inverses, and therefore cannot be

stated generically in terms of semirings. Attempts to generalize to semifields or

division semirings would seem pointless, since the concept of a conditional dis-

tribution is closely tied to the nonnegative real semiring, which happens to be

a commutative semifield. The conditionalization algorithm in Figure 4.11 is con-

crete and does not aim to generalize beyond the nonnegative reals.

149

We finish our running example by noting that the conditional model corre-

sponding to the earlier joint and marginal models has the following parameter

values:

θ(s, f) = 0.36, θ(ε, f) = 0.54,

θ(s, g) = 0.3, θ(ε, g) = 0.6,

θ(s, ε) = 0.1, θ(#) = 0.9.

If we plug these parameter values into Figure 4.6 in place of the values of the joint

model, we can now calculate the conditional probability of any string x ∈ {s}∗

given f g directly without first computing the marginal probability of f g. The

conditional distribution 〈x, y〉 7→ P2(x | y, θ), where θ is the conditionalized pa-

rameter function, can be evaluated for a specific pair of strings by the Forward

algorithm, just like the joint distribution P2. The conditional probabilities of the

first five strings in {s}∗ (ordered lexicographically) are the same as those calcu-

lated previously on page 143.

Furthermore, it is easy to check that the distribution x 7→ P2(x | y) sums to one

for every choice of y: simply apply the marginalization algorithm from Figure 4.9

to the conditional transducer. The resulting marginal automaton then represents

the function y 7→ ∑x′ P2(x′ | y) which is equal to the constant function y 7→ 1

because all parameters of the marginal automaton are set to unity by the margi-

nalization algorithm.

In conclusion, we have seen how to obtain conditional memoryless transdu-

cers from joint memoryless transducers. Conditional models play an important

part as channel models that can be combined with source models to form new

joint models. The importance of this question is not adequately reflected in the

150

HMM literature. Ristad and Yianilos [1998, p. 526] mention in passing that condi-

tional distributions are needed for string classification, but they do not provide

any discussion of conditionalization and/or marginalization of stochastic trans-

ducers. The problem of obtaining conditional from joint models should in fact

be considered as an important fourth problem in addition to the three Ferguson–

Rabiner problems [Rabiner, 1989] for HMMs. Of those, the one remaining problem

we have not discussed yet concerns decoding, which we turn to next.

4.5 Using a Joint Model for Prediction

The problem of predicting a string x ∈ Σ∗ for a given string y ∈ Γ∗ had been

defined earlier as the optimization problem looking for the “best” string

x? = argmax
x

P2(x, y) = argmax
x

P2(x | y).

This is also known as maximum a posteriori (MAP) decoding, especially in the

speech recognition literature [Rabiner, 1989; Jelinek, 1997]. While it is possible

to adapt the techniques used in speech recognition and specialize them to the

present case [Luk and Damper, 1998], the following discussion again employs

the very general perspective of weighted automata and graphs.

Consider again the transducer in Figure 4.6. It compactly represents all strings

x ∈ Σ∗ corresponding to the given string f g ∈ Γ∗, together with their joint proba-

bilities. For the purpose of decoding, the given string f g can be ignored, as one fo-

cuses on the first component of the labels. Finding the best string x ∈ Σ∗ is a hard

problem: although the probability of a single string can be computed efficiently

by the Forward algorithm, in general one might have to examine exponentially

many strings in order to find the best hypothesis. Finding the most likely string of

151

an HMM is known to be NP-hard [Goodman, 1998; Casacuberta and de la Higuera,

2000], and the proof carries over essentially unchanged to stochastic transducers.

In a certain sense, the present situation poses a dilemma not unlike the prob-

lem of parameter estimation: there (Section 4.3) we wanted to estimate the pa-

rameters of the sampling distribution P2, but could evaluate their likelihood most

easily in terms of P1, which required information about alignments. Here, it is

easy to find best paths, corresponding to single alignments, but we would really

like to find best strings, corresponding to sums over potentially exponentially

many alignments. This would be possible if these sums were taken over just a

single alignment, which is the case if the transducer is unambiguous, i. e., there is

at most one successful path for each string. One way to ensure that this is the case

involves determinization, but since determinization of automata through subset

construction is an exponential time algorithm in the worst case, this may not be

feasible for large machines. Moreover, not all weighted automata are determiniz-

able [Mohri, 1997].

In practice, the decoding problem is therefore usually solved heuristically, of-

ten by finding the n best paths without determinization and then aggregating

the probabilities of paths with identical string labels [Mohri and Riley, 2002]. In

the simplest case, known as the Viterbi approximation, we have n = 1 (however,

larger values of n do not make the problem much harder), so the problem boils

down to finding the single most likely path, whose label is then used as the best

string hypothesis.

The problem of finding the most likely path can be expressed most naturally

in the max–times semiring over the nonnegative real numbers, which is the struc-

ture R≥0
max,× = 〈{x ∈ R | x ≥ 0} ∪ {∞}, max,×, 0, 1〉 (this is similar to Good-

man’s [1999] “Viterbi semiring”, although the carrier sets are different). The key

152

difference compared with the nonnegative real semiring is that ⊕-addition now

selects the greater of two numbers, rather than adding them. Since this operation

is used to summarize sets of paths with common end points, it finds the most

likely path in the set. Note that the nonnegative max–times semiring is closed ,

with a∗ = ∞ for a > 1, and a∗ = 1 for 0 ≤ a ≤ 1. If weights are probabilities,

this last condition is always true, and therefore the most likely path is both finite

and simple. The nonnegative max–times semiring is isomorphic to the max–plus

semiring Rmax,+ = 〈R ∪ {+∞,−∞}, max, +,−∞, 0〉 (also known as the polar se-

miring), as well as the tropical semiring, by taking (negative) logarithms under

the additional convention that log 0 = −∞ and log(+∞) = +∞.

As pointed out on page 140, the automata representing marginal weights of

memoryless weighted transducers are necessarily almost-acyclic. This means that

we can find the weight of the most likely path of weighted machines like the

example from Figure 4.6 by computing the algebraic path from the start state

to the unique (w. l. o. g.) sink state using an instantiation of the generic single-

source algebraic path algorithm for almost-acyclic graphs (Figure 4.8) in the max–

times semiring (or a semiring isomorphic to it, after a suitable transformation

of weights). Even simpler, since weights are probabilities, all closures are equal

to 1, which means that loops have weight 1̄ and can therefore be completely ig-

nored. But removing loops from an almost-acyclic graph results in an acyclic

graph, which means that the standard DAWG shortest path algorithm [Cormen

et al., 1990, sec. 25.4] is applicable. (This simplification is only possible when

searching for the single most likely path; if we are interested in the n best paths

for n > 1 the algorithm in Figure 4.8 can still be used.) The max–times semiring

has the additional property that a⊕ b ∈ {a, b}, which makes it possible to recon-

struct the most likely path in addition to computing its weight (if all we were

153

s:f/1.6

 :f/1.2

s:g/2.3

 :g/1.6

Figure 4.12: A DAWG resulting from the neg-log transform of the transducer dis-
played in Figure 4.6.

interested in was the probability of the most likely path we could have also used

the generic marginalization algorithm from Figure 4.9 instantiated in the max–

times semiring).

In general, any other applicable shortest path algorithm can be used for per-

forming a blind search, and more sophisticated algorithms for guided search have

also been formulated [see Jelinek, 1997]. Since the semirings used by some short-

est path algorithms are more restrictive [Fink, 1992; Mohri, 2002c] than those de-

fined here, the path weights usually have to be transformed and lifted into differ-

ent semirings before decoding. For example, Dijkstra’s algorithm [Cormen et al.,

1990, sec. 25.2] requires nonnegative additive weights and a semiring with ad-

ditional properties [Fink, 1992]. When starting from probabilities this typically

means working with their negative logarithms. This is not strictly required in the

present case, since, as mentioned above, the relevant graphs can always be con-

sidered to be acyclic, but it is useful for numerical stability and is required in the

general setting discussed in Section 5.5. Applying the negative log transformation

to Figure 4.6 results in the graph shown in Figure 4.12.

154

The transformed weights are understood to belong to the tropical semiring

R≥0
min,+. For the same reasons discussed before, the loops present in Figure 4.6 are

absent in Figure 4.12, since in all cases we consider shortest paths are necessarily

simple paths. Similarly absent is the final weight of the unique final state, since

its presence or absence does not influence the search results.

Observe that the shortest path has labels 〈ε, f 〉〈ε, g〉, which means that the

heuristically best hypothesis in {s}∗ is the empty string ε. However, the earlier

discussions surrounding Figure 4.6 (see page 143 in particular) had established

that s is the most likely string. This illustrates the fact that the heuristic solution

which examines only the single most likely path may return suboptimal hypothe-

ses. Clark [2001, fig. 6.5] provides another example in support of the same point.

In fact, there is a systematic problem here: the most likely path is necessarily

simple and its edge labels either mention a symbol or the empty string, which

means that the heuristic hypothesis is a string that cannot be longer than the

longest (in terms of edges, not of edge weights) simple path. In other words,

when sampling only the single most likely path, the heuristically decoded string

is at most as long as the corresponding given string. This problem never surfaces

in applications of HMMs such as part-of-speech assignment, since there the de-

coded sequence (say, part-of-speech labels) is precisely as long as the given input

sequence (for example, words without part-of-speech labels). Nor is it a major

problem for letter-to-sound rules, since relatively few phoneme strings are longer

than their corresponding letter strings.

155

However, it is not difficult to construct examples that illustrate the general

problem. Consider the following parameter vector for a joint model:

θ(s, f) = 0.04, θ(ε, f) = 0.01,

θ(s, g) = 0.04, θ(ε, g) = 0.01,

θ(s, ε) = 0.8 θ(#) = 0.1.

The rest of the task remains unchanged: we still want to find the most likely

string in Σ∗ that corresponds to f g ∈ Γ∗. As before, the longest simple path has

length 2, but now the most likely string (by a small margin) is s9 of length 9. In

a situation like this where the deletion probability θ(s, ε) dominates, one must

sample a fair number of paths in order to find the most likely string. Fortunately,

letter-to-sound rules are well-behaved in this regard, and we will either use the

most likely path as a heuristic solution, or employ determinization in order to

find the most likely string directly.

Summing up, we have seen that decoding with memoryless transducers poses

a few difficult challenges, despite the apparent simplicity of the models. Decod-

ing should properly be viewed as finding the most likely string, but as there do

not seem to be efficient algorithms for this one has to resort to efficient heuristics

in practice. The simplicity of memoryless transducers does not appear to make

the MOST-LIKELY-STRING problem, which is NP-hard for HMMs and hence for

general stochastic transducers, any easier for this special case. In light of the last

example presented in this section, we conjecture that the MOST-LIKELY-STRING

problem remains NP-hard for memoryless transducers, but we do not have a

proof of this claim.

156

4.6 Conclusion

This chapter proposed the use of stochastic rational transductions for modeling

letter-to-sound and other correspondences. Stochastic transductions are generally

not limited to same-length relations and are therefore suitable for working with

unaligned data. If alignments are not known, one is forced to average or sum

over all alignment possibilities, for example when computing the probability of

two strings corresponding to each other or during parameter estimation. Doing

this is fairly straightforward for memoryless transductions in the model due to

Ristad and Yianilos [1998]. We reviewed their approach and positioned it within

a unifying algebraic framework. While much of our discussion was a review of

existing results, every section also contained extensions that Ristad and Yianilos

[1998] had only hinted at or completely ignored.

In Section 4.2 the Forward and Backward algorithms for memoryless stochas-

tic transducer were presented (correcting a few mistakes in Ristad and Yianilos’s

[1998] presentation) in an algebraic framework in which they turned out to be ab-

stractly identical to the classic dynamic programming algorithm for computing

string edit distances [Wagner and Fischer, 1974].

The key contribution of Ristad and Yianilos [1998] was to point out that pa-

rameter estimation for memoryless stochastic transducers can be viewed as an

instance of the EM algorithm. However, they did not provide a derivation of their

algorithm from the EM theorem. Section 4.3 filled in the missing details in a way

that can easily be generalized, which will be the topic of Section 5.3.

In addition to the well-known Ferguson–Rabiner Problems for HMMs (evalu-

ation, decoding, estimation), an additional fourth problem – deriving marginal

157

and/or conditional models from a joint model – was introduced, and correspond-

ing algorithms for memoryless transducers were presented in Section 4.4. These

algorithms are a novel extension to Ristad and Yianilos’s [1998] approach.

In Section 4.5 we discussed decoding for memoryless stochastic transducers

and pointed to a an open issue: whereas the MOST-LIKELY-STRING problem for

HMMs is known to be NP-hard [Goodman, 1998; Casacuberta and de la Higuera,

2000], is it also NP-hard for memoryless stochastic transducers? An affirmative

answer seems likely. For letter-to-sound rules a simple approximate decoding

scheme (so-called Viterbi decoding) may be an option, but it has a systematic

weakness and more robust approximations should be used for other applications

in which the decoded output strings are expected to be much longer than the

corresponding input strings.

We had pointed out throughout this chapter that many of the algorithms pre-

sented here are not necessarily restricted to memoryless transducers. Ristad and

Yianilos [1998] too had hinted at possible generalizations to richer transducer

topologies. The next chapter extends the current approach to the class of stochas-

tic rational transducers.

158

CHAPTER 5

LEARNING GENERAL STOCHASTIC
TRANSDUCERS

5.1 Introduction

Working within the framework developed in Chapter 4 for memoryless transduc-

tions, this chapter generalizes the previous approach and applies it to stochastic

rational transducers with arbitrary state graphs. The discussion of simple me-

moryless transductions in the preceding chapter introduced four fundamental

problems for stochastic transducers, namely evaluation, estimation, conditional-

ization, and decoding. The structure of the present chapter closely resembles that

of Chapter 4, as we address each of these four problems for general stochastic

transducers in turn.

Evaluation, decoding and estimation are closely related to analogous prob-

lems for Hidden Markov Models, which are usually presented as the Three Fun-

damental Problems for HMMs, following Ferguson and Rabiner [Rabiner, 1989].

Evaluation, marginalization and decoding for stochastic transducers are also fa-

miliar from approaches to natural language processing based on weighted finite

automata [Mohri et al., 1996; Mohri, 1997; Pereira and Riley, 1997]. The previous

sections introduced some of the algebraic techniques for working with weighted

159

automata, and we saw generic algorithms that apply across many different semir-

ings and can be specialized in the real semiring, which is the natural place for

manipulating probabilities.

The problem of parameter estimation for stochastic transducers has received

much less attention. As mentioned at the beginning of this chapter, the applicabil-

ity of the EM algorithm may have been known for quite some time and is perhaps

implicitly present in the work of Gilloux [1991] and Parfitt and Sharman [1991].

Ristad and Yianilos [1998] provided concrete algorithms for the special case of

memoryless transducers, which have a one-state topology, including a parameter

estimation algorithm which they identified as an instance of the EM algorithm.

The precise relationship, which they did not provide details on, was discussed

in Section 4.3. At around the same time, Durbin et al. [1998, ch. 4] introduced

another special case of stochastic transducers, which they refer to as Pair HMMs,

with a slightly richer three-state topology (which, incidentally, resembles the filter

transducer used by Mohri et al., 1996). Also Durbin et al. [1998] make it clear how

their algorithms derive from the EM algorithm. More general Pair HMMs were

applied to natural language processing tasks by Clark [2001, ch. 6].

Parameter estimation algorithms for general stochastic transducers have only

begun to emerge fairly recently [Clark, 2001; Eisner, 2001, 2002], and many de-

tails still remain to be worked out. What makes working with general stochastic

transducers conceptually harder is the fact that not only is the state sequence the

machine passes through “hidden” as in HMMs, even if the identity of the states is

not in question there is an additional layer of unobserved information in the form

of alignments. For example, memoryless transducers have precisely one state, so

there is never any doubt about what state the machine is in, but the precise se-

quence of edges the machines passes through when it generates a pair of strings

160

is nevertheless hidden. It is this dependency on two kinds of hidden information

that makes formulating algorithms for stochastic transducers challenging. For ex-

ample, the algorithm for calculating expected edge counts given by Clark [2001,

sec. 6.4.3] looks rather daunting at first sight, due to multiple dependencies on

alignments, states, and symbols. By contrast, the algebraic framework used by

Eisner [2001, 2002] is very elegant and allows for high-level abstractions, but may

also obscure the true complexity of his algorithms.

Like Eisner, we view stochastic transducers as special cases of weighted finite

transducers. Weighted machines will be described in the algebraic framework of

closed semirings used earlier in this chapter. This allows for many useful gen-

eralizations [Mohri et al., 1996; Goodman, 1999] and the formulation of generic

algorithms that have uses beyond the present application. Weighted automata

generalize both stochastic automata, as well as traditional unweighted machines.

Stochastic generalizations of automata have been studied since the early days

of formal language theory [Rabin, 1964]. The move from traditional unweighted

automata to weighted automata is fairly straightforward, as “unweighted” auto-

mata can be seen as weighted automata over the Boolean semiring. The Boolean

semiring is simply a two-element Boolean algebra, which, like all distributive

lattices, satisfies the semiring axioms (Definition 4.2). Many classical algorithms

for manipulating automata that were stated in terms of Boolean operations can

be generalized to arbitrary closed semirings. However, there are exceptions for

which generalizations are not straightforward or do not extend all the way to

arbitrary semirings, but only to restricted subclasses.

When the weights of an automaton represent probabilities, they are treated

as belonging to the nonnegative real semiring. This leads to a few complications,

because a number of generic algorithms [see for example Cormen et al., 1990,

161

sec. 26.4] require semirings which are closed and whose ⊕-addition operation is

idempotent, i. e., it has to be the case that a ⊕ a = a for all a ∈ K. However, the

nonnegative real semiring is not closed (see page 144) and addition of real num-

bers is not idempotent. There is not much one can do about the latter, though

it turns out that generic algorithms exist for our purposes that do not require ⊕-

additive idempotence. Extending the nonnegative real semiring with a new ele-

ment ∞ yields an extension which is formally closed. Fletcher [1980] defines such

a structure, which we refer to as the closed nonnegative real semiring, as follows:

K = R≥0 ∪ {∞} a∗ =

1/(1− a) if a < 1

∞ if a ≥ 1

⊕ = + 0̄ = 0

⊗ = × (with 0×∞ = ∞× 0 = 0) 1̄ = 1

This is similar to Goodman’s [1999] “inside semiring”, except that Goodman re-

quires all semirings to be ω-continuous [see Kuich, 1997], which may have impli-

cations for the definition of closure that he does not discuss.

For practical applications it is often advantageous to work with logarithmi-

cally transformed numbers, since weights representing probabilities can be very

close to zero and underflow their floating point representations [see Durbin et al.,

1998, sec 3.6 for practical advice].

162

The following structure, which is called the log semiring is isomorphic to the

closed nonnegative real semiring by taking negative logarithms:

K = R ∪ {+∞,−∞} a∗ =

log(1− exp(−a)) if a > 0

−∞ if a ≤ 0

a⊕ b = − log(exp(−a) + exp(−b)) 0̄ = +∞

⊗ = + 1̄ = 0

Note that one must require (+∞) + (−∞) = (−∞) + (+∞) = +∞.

The ⊕-operation of the log semiring is somewhat expensive to compute [see

however Durbin et al., 1998, sec. 3.6], and it is often reasonable to compute a⊕ b

as min(a, b), especially if a � b or b � a. If we set ⊕ = min we obtain the tropical

semiring, which we had encountered for the first time on page 121. Observe that

the tropical semiring is closed, as closure can be defined as a∗ = 0 if a ≥ 0, and

a∗ = −∞ if a < 0.

The plan for the rest of this chapter is as follows. In Section 5.2 the problem of

evaluating the mass function of general stochastic transducers is discussed. This

is a generalization of the problem from Section 4.2 to arbitrary transducer topolo-

gies. Section 5.3 concern parameter estimation, which, as pointed out earlier in

Section 4.3, is mostly about computing expected edge counts. Eisner’s [2002] ap-

proach to computing these expectations is reviewed and compared with our ap-

proach in Section 5.3. Marginalization and decoding would both benefit from

determinization, which is not always possible in general weighted automata. A

necessary precondition for determinization which can always be satisfied is that

163

a given machine be ε-free. A large portion of Section 5.4 is therefore about ε-

removal. Finally, Section 5.5 concerns decoding, but unlike Section 4.5 it discusses

the concept of minimizing the risk or expected loss of a hypothesis.

5.2 Evaluating the Mass Function of a Joint Model

The generic Forward algorithm (Figure 4.1) from Section 4.2 was used to evalu-

ate the probability mass function of a memoryless joint distribution. The simple

joint models used up to this point could all be represented by weighted transdu-

cers with a one-state topology. But this restriction can easily be removed, and we

will now consider general stochastic transducers with arbitrary topologies, repre-

sented as weighted finite state transducers whose weights are taken in the closed

nonnegative real semiring (or, equivalently, the log semiring). We begin with a

review of weighted finite transducers using notation and terminology commonly

used in language and speech processing [Mohri et al., 1996; Mohri, 1997; Pereira

and Riley, 1997].

Definition 5.1 (Weighted transducer). A weighted finite transducer over a closed

semiring 〈K,⊕,⊗, 0̄, 1̄〉 is a tuple 〈Q, Σ, Γ, qs, F, E, ρ〉, where Q is a finite set of

states or vertices, Σ and Γ are finite nonempty sets (alphabets), qs ∈ Q is the

initial state or start state, F ⊆ Q is the set of final or accepting states, E ⊆ Q× (Σ ∪

{ε})× (Γ ∪ {ε})×K× Q is a finite set of edges or transitions, and ρ : F → K is

the final weight function.

The following notational conventions will be useful: given a transition e =

〈q, σ, γ, k, q′〉 we call q the source state of e and write s(e) = q; similarly, t(e) = q′

is the target state of e; we say that e bears the label 〈σ, γ〉 and denote this by

h(e) = 〈σ, γ〉, as well as h1(e) = σ and h2(e) = γ; finally, e has weight w(e) = k.

164

We assume w. l. o. g. that w(e) 6= 0̄, since otherwise this edge could be removed

without changing the behavior of the transducer.

A path a of length |a| = n (possibly zero) is an alternating sequence of n + 1

states and n edges 〈q1, e1, . . . , qn, en, qn+1〉 such that s(ei) = qi and t(ei) = qi+1 for

all i (1 ≤ i ≤ n). Abusing notation, we write s(a) = q1 for the source vertex

of the path, and t(a) = qn+1 for its target vertex; the label of a is defined to be

h(a) = 〈h1(a), h2(a)〉, where hj(a) = hj(e1) · · · hj(en) for j ∈ {1, 2}; and the weight

of a is defined to be w(a) =
⊗n

i=1 w(ei). Note that the empty path at state q is

a = 〈q〉, and therefore |a| = 0, s(a) = t(a) = q, h(a) = 〈ε, ε〉, and w(a) = 1̄.

Furthermore, some of this notation is extended to sets of paths from a common

source vertex q to a common target vertex q′ (not necessarily distinct). If A is

such a set, we write s(A) = q, t(A) = q′, and define its weight to be w(A) =⊕
a∈A w(a).

One can assume w. l. o. g. that the number of final states of a transducer is at

most one. If it exceeds one, add a new state qt /∈ Q to Q, for each q ∈ F add

an edge 〈q, ε, ε, ρ(q), qt〉 to E, and then set F = {qt} and ρ(qt) = 1̄. The previous

notation can then be extended to apply to a transducer T : let s(T) denote the

initial state of T , and t(T) its unique final state (transducers without final states

can be ignored, since they all realize a trivial empty transduction).

A weighted transducer can be viewed as a weighted graph G by ignoring

all labels. In this case it makes sense to talk about the total weight of all paths

from a vertex q to another vertex q′ (not necessarily distinct): if A is that set, then

w(q, q′) stands for w(A). Furthermore, the weight of the entire weighted graph G

is then defined to be the total weight of all paths from its unique initial vertex to

its unique (w. l. o. g.) final vertex, namely w(G) = w(s(G), t(G)).

165

The behavior of a weighted transducer is best conceptualized as a function

Σ∗ × Γ∗ → K where K is the carrier set of the semiring algebra that provides the

operations on the transducer’s weights. A transducer T assigns a weight T (x, y)

to a pair of strings 〈x, y〉 ∈ Σ∗× Γ∗, which is the total weight of all accepting paths

(from the initial state to the final state) labeled with 〈x, y〉, formally:

T (x, y) =
⊕

a
s(a)=s(T)
t(a)=t(T)
h(a)=〈x,y〉

|a|⊗
i=1

ai

One way of computing this would be to construct a weighted graph G whose

paths coincided precisely with the accepting paths labeled with 〈x, y〉 of T , and

then to compute w(G). In order to carry out this construction, we need to intro-

duce the concept of transducer composition.

Composition of weighted finite transducers is an operation which combines

two weighted transducers T and U over the same semiring into a new transdu-

cer T ◦U such that

[T ◦U](x, z) =
⊕

y
T (x, y)⊗U (y, z). (5.1)

This is reminiscent of matrix multiplication, and generalizes relational composi-

tion. Algorithms for constructing a transducer realizing T ◦U from transducers

T and U are well known [Mohri et al., 1996; Pereira and Riley, 1997; Mohri et al.,

2000], and are not completely trivial in the general case of semirings with non-

idempotent ⊕-addition.

The transducers considered below are typically of the form X ◦T ◦Y , where

X is a transducer that recognizes only a single string, and so is Y . More precisely,

166

such a transducer recognizes the string x if it maps the pair 〈x, x〉 to 1̄ and maps

all other pairs to 0̄. We write Str(x) to denote a transducer with that behavior.

Given a string x ∈ Σ∗, the transducer Str(x) can be constructed as follows: the set

of states Q is the set of all prefixes of x; the two alphabets are identical, i. e., Σ = Γ;

the initial state is the empty prefix ε; the final state is the trivial prefix x; the set of

transitions is the set

{〈q, σ, σ, 1̄, q′〉 | q, q′ ∈ Q ∧ σ ∈ Σ ∧ qσ = q′};

and the final weight of the final state x is ρ(x) = 1̄.

A memoryless transducer Mθ with parameter vector θ of the form considered

earlier in this chapter takes the following form: the set of states Q is the singleton

set {q}; the initial state is q, obviously; q is also a final state, i. e., F = Q; the set of

transitions is the set

{〈q, σ, γ, θ(σ, γ), q〉 | σ ∈ (Σ ∪ {ε}) ∧ γ ∈ (Γ ∪ {ε})};

and the final weight of q is ρ(q) = θ(#).

5.2.1 Reconstruction of the Forward Algorithm

Transducers of the form Str(x) ◦Mθ ◦ Str(y) correspond precisely to the Forward

trellises encountered in Section 4.2. For example, the specific trellis in Figure 4.2

can be viewed as the result of transducer composition, namely as the transducer

Str(ab) ◦Mθ ◦ Str(stu) (only edge labels are shown in Figure 4.2; the weight of an

edge labeled 〈σ, γ〉 is θ(σ, γ)). To see why this is the case consider the behavior of

167

the transducer Str(x) ◦T for any transducer T . By the definitions of composition

and of Str(x),

[Str(x) ◦T](x′, z) =
⊕

y
Str(x)(x′, y)⊗T (y, z) =

T (x, z) if x = x′

0̄ otherwise

Suppose that x = x′. Then Str(x)(x′, y) = 0̄ for all y 6= x′, so the ⊕-sum over all

y has only one non-0̄-zero term when x = x′ = y, namely Str(x)(x, x) ⊗T (x, z),

which is identical to T (x, z) since by definition Str(x)(x, x) = 1̄. Otherwise (if

x 6= x′) it is always the case that Str(x)(x′, y) = 0̄. We can use this argument twice

to show that

[Str(x) ◦T ◦ Str(y)](x′, y′) =

T (x, y) if x = x′ ∧ y = y′

0̄ otherwise

The definition of a transducer’s behavior entails that all accepting paths of a trans-

ducer realizing the composition Str(x) ◦T ◦ Str(y) are labeled with 〈x, y〉. Further-

more, one can assume w. l. o. g. that these are the only paths through the transdu-

cer, since it assigns 0̄ to all other pairs of strings, which is the default if there are

no accepting paths. But this means that we have restricted our attention to pre-

cisely the paths labeled 〈x, y〉, so that we can now ignore all labels and treat the

weighted transducer Str(x) ◦T ◦ Str(y) as a weighted graph G with the property

that w(G) = T (x, y).

If T is a memoryless transducer Mθ, then G has a trellis topology, as previ-

ously discussed. This means that the generic Forward algorithm can be seen as

performing the following computations (note the similarity to Eisner’s [2001] slo-

gan “compose + minimize”):

168

1. Given strings x and y and a (memoryless) transducer T , construct the un-

derlying weighted graph G of the composed transducer Str(x) ◦T ◦ Str(y);

2. Compute and return the vector of weights (“algebraic distances”) of the

form w(s(G), q) for all vertices q of G .

The generic Forward algorithm is very efficient because the composition in the

first step does not have to be performed explicitly as the topology of T is known,

and the single-source algebraic path problem at the core of the second step can

be solved in linear time on acyclic graphs like the Forward trellises. Note that the

vertices of G are triples 〈x′, q, y′〉 where x′ is a prefix of x, q is the single state of

the memoryless transducer T , and y′ is a prefix of y. By mapping such a triple

to a pair 〈|x′|, |y′|〉, we obtain the indices of the matrix α that the generic Forward

algorithm (Figure 4.1) constructs. In this sense, the distance vector introduced

here contains the same information as the Forward matrix α.

5.2.2 Computing Forward and Backward Probabilities

The specific assumptions of the Forward algorithm are now easy to remove. For

one thing, the topology of T may be arbitrary. If no restrictions are placed on T ,

then the composition step generally has to be carried out explicitly. Furthermore,

the transducers that T is composed with on either side do not have to be of the

form Str(x). In an extreme case, they may be completely absent: for example,

computing the total weight of T ◦ Str(y) when T is a joint stochastic transducer

yields the marginal probability of the string y. In general the composed transdu-

cer may be of the form X ◦T ◦Y without any further restrictions. This is useful

if we are interested in computing probabilities for non-basic events like the string

x corresponding to either y or y′.

169

To compute such probabilities, we need to determine the total weight of the

weighted graph G corresponding to the composed transducer. We cannot gener-

ally compute the weight of a graph by naive enumeration of all paths, since there

are infinitely many paths if the graph has cycles. If the graph is acyclic, the num-

ber of paths is obviously finite, but it may still be exponential in the size of the

graph, as we had seen earlier. We need to decompose the problem and exploit

the algebraic properties of the semiring from which the weights are drawn. There

are several ways of computing the total weight of the graph G in the second step,

depending on what is known about G and/or its weight semiring. The following

cases are important:

1. Acyclic graphs with a known topology. This is the case for the graphs con-

structed implicitly by the Forward and Backward algorithms. Since X and

Y are acyclic and have a known topology and T has a trivial one-state

topology, X ◦T ◦Y is acyclic and has a predictable trellis topology, which

can then be left implicit. Moreover, topological orderings of the vertices of

G are known a priori. The Forward and Backward algorithms explore the

edges of G in a known topological order, but neither G nor a topological

ordering have to be constructed explicitly. Because G is acyclic, any semi-

ring can be used, as closure is not required. It is clear, based in part on the

discussion in Section 4.2, that the overall running time is linear in the size

of G .

Though slightly more complex, the topologies of the Pair HMMs studied by

Durbin et al. [1998, ch. 4] (see also the related works cited by Clark [2001,

sec. 6.5.1]) are fixed and known a priori too, so their algorithms also fall in

this class.

170

2. Acyclic graphs whose topology is not known a priori. The main difference

compared with the Forward algorithm is that implicit representations can

no longer be used. Composition has to be performed explicitly, and the ver-

tices of G must be topologically sorted, as the single-source algebraic path

for DAWGs explores the vertices of G in topological order. The asymptotic

running time is still linear in the size of G [Cormen et al., 1990, sec. 25.4], but

the proportional overhead is slightly larger compared with the first case.

3. Almost-acyclic graphs. We had seen these in Section 4.4, arising in the

computation of marginal weights. More precisely, we had argued there, al-

though not in these exact terms, that the composition Mθ ◦ Str(y) of a me-

moryless transducer Mθ with a transducer Str(y) accepting a single string is

necessarily almost-acyclic. The algorithm in Figure 4.8 can be used to com-

pute the weight of G , but it assumes that G is represented by a triangular

adjacency matrix. This representation can be obtained by topologically sort-

ing the vertices of G while ignoring any loops. Due to the presence of loops,

the semirings should be closed, or at the very least the closure operation

must be defined for the weights of all loops of G .

4. Arbitrary graphs over k-closed semirings, for which a generic single-source

algebraic path algorithm is applicable [Mohri, 1998, 2002c]. In the frame-

work developed by Mohri, a semiring is k-closed if
⊕k+1

i=1 ai =
⊕k

i=1 ai for all

a ∈ K. Intuitively, this means that the weight of a cycle can be determined

by traversing it k times, but traversing it more often does not change the

total weight. The min–plus semiring over the nonnegative reals is 0-closed,

because a0⊕ a1 = a1 is the same as 1̄⊕ a = 1̄, which in this specific semiring

means min(0, a) = 0. This is always true, because a is nonnegative.

171

The closed nonnegative real semiring, however, is not k-closed for any nat-

ural number k, because generally ∑k+1
i=1 ai 6= ∑k

i=1 ai for a ∈ R≥0. However,

for a ∈ [0; 1) and sufficiently large k, one may say that ∑k+1
i=1 ai ≈ ∑k

i=1 ai,

and Mohri’s algorithm can therefore be used as an approximation when the

weights of cycles represent probabilities, which fall into the interval [0; 1).

5. Arbitrary graphs over arbitrary closed semirings. In this most general case,

the graphs need not be acyclic and the closed semirings need not be k-closed

or additively idempotent. In fact, the semirings need not even be closed, as

long as the closure operation is defined for the weights of all cycles.

No single-source algebraic path algorithms are known. However, certain

variants of the Floyd–Warshall all-pairs shortest-path algorithm [Warshall,

1962; Floyd, 1962] are applicable. Generalizations that work with idempo-

tent semirings are well known [Aho et al., 1974; Cormen et al., 1990], and the

requirement for an idempotent⊕-operation can in fact be dropped [Fletcher,

1980].

The generalized Floyd–Warshall all-pairs algebraic path algorithm solves

many related graph problems, all of which ask for the weight of a graph.

The interpretation of that weight depends on the semiring used. At least

the following specializations of this algorithm and corresponding problems

(and semirings) are known:

(a) Kleene’s algorithm for converting a finite automaton to a regular ex-

pression (semiring of regular languages over a fixed fixed alphabet Σ:

let K be the set of regular languages over Σ, ⊕ is set union, ⊗ is con-

catenation of languages, 0̄ is the empty set, and 1̄ is the set {ε});

172

(b) Warshall’s algorithm [Warshall, 1962] for computing the transitive clo-

sure of graphs (Boolean semiring);

(c) Floyd’s algorithm [Floyd, 1962] for computing all-pairs shortest paths

(tropical semiring);

(d) The Gauss–Jordan algorithm for matrix inversion with pivoting (real

semiring).

Since we are dealing with non-k-closed non-idempotent semirings over po-

tentially cyclic graphs, we present the generalized Gauss–Jordan–Kleene–Floyd–

Warshall–Aho–Hopcroft–Ullman–Lehmann–Fletcher all-pairs algebraic path al-

gorithm in some detail. Unfortunately, many standard presentations of this al-

gorithm [Aho et al., 1974; Cormen et al., 1990] are too specific. For one thing, they

assume [Cormen et al., 1990, p. 570] that the ⊕-operation of the semiring is ad-

ditively idempotent, but this assumption can easily be dropped [Fletcher, 1980]

without major modifications to the algorithm. They also assume that the semi-

ring is closed, which requires the closure operation of the semiring to be a total

function; but in fact one can work with a partial closure operation, as long as

all closures that arise during the execution of the algebraic path computation are

well-defined.

A version of the generalized Floyd–Warshall algorithm that does not require

additive idempotence of the weight semiring is shown in Figure 5.1. As Fletcher

[1980] points out, this algorithm differs from the version that requires an idem-

potent semiring only in terms of when the identity matrix is added: lines 10–

12 in Figure 5.1 compute L(n) ← L(n) ⊕ Ī (where Ī is the n × n identity matrix

173

1: � Input: n× n adjacency matrix M of a weighted graph
2: L(0) ← M � CLR: L(0) ← M⊕ Ī
3: for k ← 1 to n do
4: for i ← 1 to n do
5: for j ← 1 to n do
6: L(k)[i, j] ← L(k−1)[i, j]

⊕
(

L(k−1)[i, k]⊗ (L(k−1)[k, k])∗ ⊗ L(k−1)[k, j]
)

7: end for
8: end for
9: end for

10: for i ← 1 to n do
11: L(n)[i, i] ← L(n)[i, i]⊕ 1̄
12: end for
13: return L(n)

Figure 5.1: The generalized Floyd–Warshall all-pairs algebraic path algorithm.

with 1̄ along the main diagonal and 0̄ everywhere else), whereas the COMPUTE-

SUMMARIES algorithm from [Cormen, Leiserson, and Rivest, 1990, p. 575] instead

adds the identity matrix to L(0) on line 2 (see the comment ‘CLR’ in Figure 5.1).

As a result, the COMPUTE-SUMMARIES algorithm computes a slightly differ-

ent distance matrix, which coincides with the true distance matrix on the addi-

tional assumption of idempotence. Consider the following example:

a b

0̄ c

In a weighted graph with this adjacency matrix, the generalized distance between

vertex 1 and vertex 2 is a∗ ⊗ b ⊗ c∗. However, the CLR algorithm computes this

174

quantity as (a ⊕ 1̄)∗ ⊗ b ⊗ (c ⊕ 1̄)∗, which is equal to the true distance if the se-

miring is idempotent (in order to prove the equality (a ⊕ 1̄)∗ = a∗, show that⊕n
i=1(a ⊕ 1̄)i =

⊕n
i=1 ai by induction on n, using the lemma (a ⊕ 1̄)n =

⊕n
i=0 ai,

which can also be proved by induction). Fletcher’s algorithm, on the other hand,

computes the correct distance directly without relying on idempotence to save

the day.

The running time of the generalized Floyd–Warshall algorithm is cubic in the

number of vertices. More precisely if T⊕ is the running time of the ⊕-addition

operation, T⊗ the running time of the ⊗-multiplication operation, and T(·)∗ the

running time of the closure operation, then running time of the overall algorithm

is Θ(n3 (T⊕ + T⊗) + n T(·)∗). The space requirement is merely quadratic, since at

any given point during the execution of the algorithm at most two n× n matrices

are accessed, even though the algorithm constructs n such matrices in total. The

space requirement can be further reduced in practice (though not asymptotically)

by using a version of the algorithm that computes the closure of the adjacency

matrix in place. A variant of the algorithm that uses in-place updates appears

in Figure 5.2. Observe that the matrix is accessed one row at a time, so sparse

representations like adjacency lists could be used.

Once L(n) has been computed, the vector α of distances from the graph’s

source vertex s(G) is the row of L(n) corresponding to the source vertex; and the

vector β of distances to the target vertex t(G) is the column of L(n) correspond-

ing to the graph’s target vertex. The weight w(G) of the graph can be found in

the cell of L(n) where the row vector α and the column vector β intersect. There

does not appear to be a general algorithm for computing α and β without comput-

ing the entire distance matrix L(n). Therefore, when dealing with almost-acyclic

graphs (which remain almost-acyclic when all edges are reversed) it is preferable

175

1: � Input: n× n adjacency matrix L of a weighted graph
2: for k ← 1 to n do
3: b ← (L[k, k])∗

4: for i ← 1 to n do
5: if i 6= k and L[i, k] 6= 0̄ then
6: a ← L[i, k]⊗ b
7: for j ← 1 to n do
8: L[i, j] ← L[i, j]⊕ (a⊗ L[k, j])
9: end for

10: end if
11: end for
12: � finish the case i = k
13: if L[k, k] 6= 0̄ then
14: c ← 1̄⊕ (L[k, k]⊗ b)
15: for j ← 1 to n do
16: L[k, j] ← c⊗ L[k, j]
17: end for
18: end if
19: L[k, k] ← L[k, k]⊕ 1̄
20: end for
21: return L

Figure 5.2: The generalized Floyd–Warshall all-pairs algebraic path algorithm,
using in-place updates.

176

to run the linear time single-source algebraic path algorithm for almost-acyclic

paths twice, instead of using the cubic time all-pairs algebraic path algorithm for

general graphs.

In conclusion, computing the probability mass that a general stochastic trans-

ducer assigns to a single basic event 〈x, y〉 (or to a set of events that can be de-

scribed by finite transducers; this includes computing marginal probabilities) can

be done by a weighted transducer composition followed by an algebraic distance

computation using an appropriate algebraic path algorithm.

We consider this approach to be preferable to others that have been proposed

in the literature, mainly because viewing it as a sequence of operations on finite

transducers places it among other well understood problems, and it abstracts

away from some of the complexities of the underlying problem. For example, we

had noted earlier that the vertices of G resulting from the composition X ◦T ◦Y

of three transducers are in general triples. This parallels the observations by

Durbin et al. [1998, ch. 4] and Clark [2001, ch. 6] that a three-dimensional array

must be used for a direct presentation of the dynamic programming schemes that

extend the Forward algorithm for HMMs. The clarity of their presentation of their

algorithms is somewhat reduced by the multiple dependencies between states

and two strings or sequences that have to be tracked. The classic Forward al-

gorithm and its generalization in Figure 4.1 interleave transducer composition

and algebraic path computations, and while this is very elegant for memoryless

transducers, it makes direct extensions and generalizations to arbitrary topologies

rather cumbersome.

177

By contrast, the added conceptual complexity has remained hidden in our pre-

sentation, as there was never any need to inspect the internal structure of the ver-

tices of G . Moreover, since we separated the composition step cleanly from the al-

gebraic distance computation, our approach can deal with arbitrary compositions,

whereas Clark [2001] is restricted to compositions of the form Str(x) ◦T ◦ Str(y).

This separation into two steps comes with very little overhead, since composition

can be carried out “on the fly” [Mohri et al., 2000], so that in practical implemen-

tations the two steps may end up interleaved again.

5.3 Estimating the Parameters of a Joint Model

Maximum likelihood parameter estimation for general stochastic transducers pro-

ceeds along the same general lines as for memoryless transducers. In our previ-

ous discussion in Section 4.3 we had already pointed out the generality of the

parameter estimation algorithm presented by Ristad and Yianilos [1998]. As we

had seen earlier, the central problem of EM-style parameter estimation is the com-

putation of expected counts of edges, which is the topic of this section for the

most general case.

5.3.1 Calculating Expected Counts

We had seen in the memoryless case (Section 4.3) that computing expected edge

counts involves computing the Forward probabilities α and Backward probabili-

ties β. In the general case, when a joint stochastic transducer T is trained on a

sample 〈x, y〉, we can construct the composed transducer Str(x) ◦T ◦ Str(y) and

compute the distance matrix of its underlying graph G as in the preceding section,

in order to obtain the distance vectors α and β.

178

Consider an accepting path a through the graph (from the source vertex s(G)

to the target vertex t(G)). Its weight w(a) can be viewed as the probability that a

is the result of a random walk through the transducer, and its contribution to the

weight of the graph (which is assumed to be finite) is the conditional probability

w(a)/w(G). As before, let C(e, a) denote the number of times that edge e occurs

in path a. Recall that in general a need not be a simple path, so it is possible that

C(e, a) > 1 if the graph G has cycles. The expected number of occurrences of

edge e, written γ(e) following both our earlier usage and traditional HMM termi-

nology, is defined in a manner analogous to equation (4.9) from Section 4.3:

γ(e) =
1

w(G) ∑
a

s(a)=s(G)
t(a)=t(G)

w(a) C(e, a)

Define γ′(e) = γ(e) ×w(G). We know how to compute w(G) using an alge-

braic path algorithm as discussed in Section 5.2. The remaining question is how

to compute γ′(e). It is clear that we only need to consider paths that contain the

specific edge e. Consider the set of all paths that contain at least one occurrence of

edge e. The paths in this set are of the form depicted in Figure 5.3. In this figure, A

stands for the set of all paths that do not include edge e and which originate at the

designated source vertex s(G) (called s in the figure) and end at the vertex s(e).

Edge e is shown in bold, and the dotted line labeled R represents the set (possibly

empty) of all paths that do not include edge e and which lead from t(e) back to

s(e). Finally, B is the set of all paths that do not include e leading from t(e) to the

designated target vertex t(G) (called t in the figure). Clearly, any successful path

through the graph G that passes along edge e will have a prefix drawn from set

A, pass through e at least once, possibly return via a path in R and pass through

179

s s(e)
A

t(e)
e

R

t
B

Figure 5.3: Schematic decomposition of paths that traverse edge e.

e again (this may be repeated a finite number of times), before reaching the sink

vertex via a path in B.

Since in general it is possible for a path to contain more than one occurrence

of edge e, we need to explicitly take the number of occurrences into account:

γ′(e) = w(A)× (1 w(e) + 2 w(e) w(R) w(e) + · · ·)×w(B)

An easy special case arises when the set R is empty. Then w(R) = w({}) = 0, and

therefore

γ′(e) = w(A)×w(e)×w(B).

Moreover, R = {} implies that no path from the graph’s source vertex s(G) that

contains e can reach s(e) again after having traversed e (note that edge e cannot

be a loop in this case, because then R would contain the empty path 〈e〉). In other

words, the set A contains all paths that lead to s(e) from the graph’s source vertex,

180

and therefore w(A) = w(s(G), s(e)). A symmetric argument leads to w(B) =

w(t(e), t(G)), and this allows us to conclude in this special case that

γ′(e) = w(s(G), s(e))×w(e)×w(t(e), t(G)).

Next we consider what happens when R 6= {}. This is the crucial case that

arises only with cyclic transducers. Since we had assumed that edge weights are

non-0̄-zero, this means that w(R) 6= 0. Therefore it is possible to rearrange the

infinite sum corresponding to the e R loop as follows:

1 w(e) + 2 w(e) w(R) w(e) + 3 w(e) w(R) w(e) w(R) w(e) + · · ·

=
1

w(R)
× (1 w(e) w(R) + 2 w(e) w(R) w(e) w(R) + · · ·)

=
1

w(R)
×

∞

∑
i=1

i× (w(e) w(R))i

=
w(e)

(1−w(e) w(R))2

The last equality is due to the fact that, for |r| < 1,

∞

∑
i=1

i× ri =
r

(1− r)2 .

181

We know that |w(e) w(R)| < 1, because otherwise w(G) would not be finite. Con-

tinuing with γ′(e):

γ′(e) = w(A)× (1 w(e) + 2 w(e) w(R) w(e) + · · ·)×w(B)

= w(A)× w(e)
(1−w(e) w(R))2 ×w(B)

= w(A)× 1
1−w(e) w(R)

×w(e)× 1
1−w(R) w(e)

×w(B)

= w(A)× (w(e) w(R))∗ ×w(e)× (w(R) w(e))∗ ×w(B)

Because of the decomposability of sets of paths, any path from s(G) to s(e)

can be spliced together from a prefix included in the set A and any number of

continuations that first traverse edge e and then return to s(e) via a path (possibly

an empty path) included in the set R. Because w(A) is the total probability of all

paths that start at s(G), do not traverse e, and end at s(e), and (w(e)×w(R))∗ is

the total probability of all paths that start and end at s(e), we can say that

w(A)× (w(e) w(R))∗ = w(s(G), s(e)).

An analogous argument can be made for w(t(e), t(G)), and therefore γ′(e) again

simplifies to

γ′(e) = w(s(G), s(e))×w(e)×w(t(e), t(G)).

Observe that w(s(G), s(e)) is precisely the Forward probability α[s(e)], and

w(t(e), t(G)) is the Backward probability β[t(e)]. This means that the conditional

expectation γ(e) can be computed exactly as before in Figure 4.5.

182

The exact details of parameter estimation depend on the parameterization of

the stochastic transducer. One often assumes [Clark, 2001; Eisner, 2002, for exam-

ple] that parameters are associated with each edge of the transducer T in such a

way that for each state q, the weights of all edges leaving q plus the final weight

ρ(q) of q sum to one. Eisner [2002] calls such transducers Markovian, and Mohri

and Riley [2001] call them standardized and show that all deterministic minimal

weighted transducers can be standardized. It makes sense to parameterize trans-

ducers in a way that ensures standardization, which will then be preserved as an

invariant during parameter re-estimation. A very general case involves separate

parameter vectors θ(q) for each state q which consist of parameters for each out-

going edge and for the final weight of q. For notational convenience, we assume

that there is a single designated final state qt, so that the final weight of any other

state can be attached to an edge leading to qt and labeled with 〈ε, ε〉. Outgoing

edges will be identified by triples 〈σ, γ, q′〉 consisting of the edge labels and the

target state of the edge, i. e., we assume w. l. o. g. that for each label there is at most

one edge between any pair of states. This means that parameters have the form

θ(q)(σ, γ, q′), which we abbreviate as θ(q)(e). For Markovian or standardized

transducers we assume that ∑e θ(q)(e) = 1 for all states q.

Parameter estimation amounts to mapping the expected edge counts to the

appropriate parameters. For Markovian transducers, this is shown in Figure 5.4,

which constitutes the so-called E step of the present instance of EM and closely re-

sembles the corresponding algorithm for memoryless transducers from Figure 4.5.

The maximization step is essentially the same as for memoryless transducers: for

each state q, the expected parameter counts γ(q) are normalized and become the

new parameters θ(q) for q.

183

1: calculate the Forward probabilities α
2: calculate the Backward probabilities β
3: p ← w(G) � normalizing term, assumed to be nonzero
4: initialize γ to contain only zeroes
5: for each edge e in G do

6: γ(s(e))(e) ← γ(s(e))(e) +
α[s(e)] w(e) β[t(e)]

p
7: end for

Figure 5.4: Calculating expected parameter counts for general stochastic transdu-
cers.

5.3.2 On So-Called Expectation Semirings

An alternative way to compute expectations is to reformulate the problem in such

a way that it can be solved by the generalized Gauss–Jordan–Kleene all-pairs al-

gebraic path algorithm (Figure 5.1). This means defining an appropriate semiring

structure such that expected values can be read off the distance matrix returned

by the generalized Gauss–Kleene–Warshall algorithm.

Semiring structures for carrying out these kinds of computations are due to Ri-

ley [Michael D. Riley, personal communication, July 2002] and Eisner [2001, 2002].

The idea is to enrich the carrier set of the semiring in such a way that expected

values can be accumulated. A useful example is Riley’s entropy semiring:

K = R≥0 ×R≥0 〈p, η〉∗ = 〈1/(1− p), η/(1− p)2〉

〈p, η〉 ⊕ 〈p′, η′〉 = 〈p + p′, η + η′〉 0̄ = 〈0, 0〉

〈p, η〉 ⊗ 〈p′, η′〉 = 〈p′ p, p′ η + p η′〉 1̄ = 〈1, 0〉

184

where 〈p, η〉∗ is undefined for p ≥ 1. It is used as follows. We are given a weigh-

ted graph G corresponding to a stochastic transducer whose edge weights are

probabilities taken from the closed nonnegative real semiring. Replace each edge

weight p with a new weight 〈p,−p log(p)〉 from the entropy semiring. Compute

the generalized all-pairs algebraic distance matrix, and ⊕-add (in the entropy se-

miring) the generalized distances between the machine’s start state and each final

state. The result is a tuple 〈P, H〉 where P = w(G) is the total probability mass

of the stochastic transducer and H is the entropy of the probability distribution

represented by the transducer. To see why this is the case, consider what hap-

pens when we ⊗-multiply two edges. Suppose their original probabilities are

p and p′, so that their weights in the expectation semiring are 〈p,−p log p〉 and

〈p′,−p′ log p′〉, respectively. Now ⊗-multiply these values:

〈p, −p log p〉 ⊗ 〈p′, −p′ log p′〉 = 〈p p′, p′(−p) log p + p(−p′) log p′〉

= 〈p p′, −p p′ (log p + log p′)〉 = 〈p p′, −p p′ log(p p′)〉

The result is again of the form 〈p,−p log p〉. So ⊗-multiplication can be used to

work out the probability p = w(a) of each path a, together with its contribution

−p log p to the entropy. By ⊕-adding up these values across all paths, we obtain

〈
∑

a
s(a)=s(G)
t(a)=t(G)

w(a), −∑
a

s(a)=s(G)
t(a)=t(G)

w(a) log w(a)

〉
= 〈w(G), H〉.

Since the entropy H of a distribution is a special kind of expected value under

that distribution, the approach can be generalized to compute expected values of

arbitrary sorts. Eisner’s [2002] expectation semirings are, not surprisingly, very

185

similar to Riley’s entropy semiring. In fact, suppose Riley’s expectation semiring

was initialized as follows: replace each edge weight p of a stochastic transducer

with a new weight 〈p, 0〉, and replace the weight p of a designated edge e with

the new weight 〈p, p〉. Then computing the weight of the graph yields the total

probability mass of the graph together with the expected number of occurrences

of edge e in an accepting path.

Eisner’s [2001] proposal is simply to let all ηs be vectors. Formally, Eisner’s ex-

pectation semirings are defined in terms of certain semimodules over the closed

nonnegative real semiring. In general, given a closed semiring 〈R, �, �, 0̂, 1̂〉 and

an (R, R)-bisemimodule 〈M, u, ·,~0,~1〉, define the trivial extension [Golan, 1992,

p. 145, example 13.20; see also example 13.33] of R by M, written R n M, as fol-

lows:

K = R×M 〈r, m〉∗ = 〈r∗, r∗ ·m · r∗〉

〈r, m〉 ⊕ 〈r′, m′〉 = 〈r � r′, m u m′〉 0̄ = 〈0̂,~0〉

〈r, m〉 ⊗ 〈r′, m′〉 = 〈r � r′, r ·m′ u r′ ·m〉 1̄ = 〈1̂,~0〉

However, the generality of this definition seems unnecessary, since the notion of

expectation does not seem particularly meaningful outside a semiring that can

be used for manipulating probabilities. Although in principle any semiring with

K ⊆ R ∪ {∞} and where ⊕ is real addition defines a discrete probability dis-

tribution on the paths of a graph, provided the weight of the graph is finite, it

is an open question whether there are any practically useful semirings in which

⊕ = + and ⊗ does not essentially involve real multiplication. In practice, the

real semiring and the isomorphic log semiring appear to be most useful, and so

186

expectations generally live in bisemimodules over the real semiring, which in all

practical cases turn out to be vector spaces.

In all of Eisner’s examples, the underlying semiring of his expectation semir-

ings is in fact the real semiring, and the associated bisemimodules are real vector

spaces Rn where n is the number of distinct kinds of expected values one wants

to compute (the number of edges, or more generally the number of parameters, in

case of parameter tying). Riley’s entropy semiring is a special case where n = 1.

Using Eisner’s expectation semiring requires the following initialization. Re-

place the weight p of the ith edge with 〈p, p · bi〉where bi is the ith basis vector of

the vector space (all components are zero, except that the ith component is one).

The definition of expectation semirings as the trivial extension of the real semiring

by a real vector space remains unchanged. With this initialization, computing the

weight of the graph in the appropriate expectation semiring effectively computes

the expected values of all edges simultaneously. However, the fact that the opera-

tions of the bisemimodule (the vector space) manipulate vectors of real numbers

affects the space and time complexity of the overall computation.

The worst case space requirement for computing all-pairs algebraic paths in

expectation semirings is O(V2 × E) in the presence of cyclic graphs and no pa-

rameter tying, where V the number of vertices of the graph and E the number of

edges, because each entry of the V × V distance matrix is an E-dimensional vec-

tor. If the graph is dense yet simple, O(V4) space is required. However, the state

graph of the transducer need not be simple, as there can be up to (|Σ|+ 1)(|Γ|+ 1)

edges between any pair of nodes. For example, the memoryless transducers from

Chapter 4 have that many loops. So the maximal number of edges if V2(|Σ| +

1)(|Γ|+ 1).

187

As noted before, the running time of the all-pairs algebraic path algorithm

is O(V3 (T⊕ + T⊗) + V T(·)∗), where T⊕ etc. is the running time of an isolated ⊕

etc. operation. But note that the running times of the semiring operations are

not constant in the expectation semiring, because they involve operations on E-

dimensional vectors. So the running time of the all-pairs algebraic path algorithm

is in fact O(V3 E), which is O(V5) for dense simple graphs. Eisner [2001] is aware

this and discusses a more sophisticated implementation that he intends to be used

in practice.

By contrast, the approach outlined earlier requires a call to the all-pairs al-

gebraic path algorithm applied to the real semiring, for which we assume, jus-

tifiably, that all semiring operations can be carried out in constant time. There-

fore the overall running time of our algorithm for computing edge expectations

is O(V3 + E) in the worst case, which is O(V3) for dense simple graphs. Eis-

ner’s algorithm, on the other hand, is extremely general and still applicable in

the presence of complex parameter tying. However, some of the scenarios dis-

cussed by Eisner [2002] require symbolic representations of edge weights, which

means that the basic semiring operations must evaluate and manipulate symbolic

expressions, rather than concrete floating point numbers. This makes a naive

implementation of Eisner’s algorithm very expensive, but it might be the only

straightforward choice if one were to use symbolic parameter tying.

In conclusion, we have shown that the parameter estimation algorithm pro-

posed by Ristad and Yianilos [1998] for memoryless stochastic transducers ex-

tends more or less straightforwardly to general stochastic transducers, even in the

presence of cycles. The running time of the extended parameter estimation algo-

rithm is dominated by the running time of algebraic path algorithm discussed in

Section 5.2. The alternative parameter estimation procedure proposed by Eisner

188

[2001, 2002] is more expensive to carry out, even when the naive implementation

is avoided; whether the added flexibility it affords is essential for practical appli-

cations has yet to be demonstrated. We will see an example that could benefit

from this flexibility in Section 6.8.

5.4 Obtaining Conditional Models

We had already seen in Section 5.2 that the marginal weight a weighted transdu-

cer assigns to a particular string can be computed by a variant of the procedure

which evaluates the joint mass function for a particular pair of strings. To find the

marginal weight of string y assigned by a transducer T , compute the composi-

tion T ◦ Str(y) and determine the weight of its underlying graph, which is equal

to
⊕

x′ T (x′, y).

5.4.1 Marginal Automata

As in Section 4.4 before, there may also be the need to construct the marginal au-

tomaton of a transducer. In general, the marginal automata are just projections of

the original transducer. This means replacing each transducer edge of the form

〈q, σ, γ, k, q′〉 with an automaton edge 〈q, σ, k, q′〉 (first projection) or 〈q, γ, k, q′〉

(second projection). The resulting automata may not be very easy to work with,

as they may contain ε-transitions and are generally not deterministic. As pointed

out in Section 4.4, deterministic automata are important for constructing condi-

tional transducers. In general, marginalization comprises the following steps:

1. Project the transducer onto an automaton;

2. Remove ε-transitions from the automaton;

189

3. Determinize the automaton.

The generic marginalization algorithm for memoryless transducers, which ap-

peared in Figure 4.9, implicitly carries out all three steps. The computation of

marginal weights on lines 7 and 9 is necessary for projecting a deterministic

automaton (the second projection is taken), and ⊗-multiplying the weights of

non-ε-edges with the weight of the source state’s deletion loops on line 11 corre-

sponds to ε-removal, as it ensures that the weights of ε-transitions are correctly

preserved.

5.4.2 Conditional Stochastic Transducers

Conditionalization of a stochastic transducers also works as in Section 4.4 before.

It only makes sense in the real semiring, as it requires an unambiguous marginal

automaton whose weights are replaced by their reciprocal values, and which is

then composed with the original transducer [see also Eisner, 2002]. Formally, the

following steps are involved:

1. Given a stochastic transducer T , compute the first projection π1(T) (resp.

second projection π2(T)), remove ε-transitions, determinize, and call the

resulting automaton A ;

2. Replace each edge 〈q, σ, k, q′〉 of A with an edge 〈q, σ, σ, 1/k, q′〉 and call the

resulting transducer R;

3. Compute the composition R ◦T (resp. T ◦R).

The first step is the marginalization procedure described above. The second step

constructs a transducer R that is just like the automaton A except that its weights

190

are the multiplicative inverses of the corresponding weights of A . While this

would in principle work in any division semiring, there do not appear to be any

applications outside the real semiring (or the isomorphic log semiring). Suppose

we are working with the second projection, as in all previous examples. Margina-

lization ensures that A (y) = ∑x′ T (x′, y), which together with the fact that A is

deterministic means that the behavior of R is the following:

R(y′, y) =

1

∑x′ T (x′, y)
if y′ = y

0 otherwise

The composition carried out in the third step has the following behavior:

[T ◦R](x, y) = ∑
y′

T (x, y′) ◦R(y′, y)

=
T (x, y)

∑x′ T (x′, y)

The last equality is due to the fact that the sum over all y′ contains precisely one

nonzero term, namely when y′ = y.

The conditionalization algorithm for memoryless stochastic transducers from

Figure 4.11 performs the three general steps described here. The first step (mar-

ginalization) was described above, and corresponds to lines 8, 10 and 12 of Fig-

ure 4.11. In fact, line 12 takes care of the ε-removal step of marginalization, and

also computes the reciprocal of the marginal weight. Composition of memoryless

transducers, which is almost trivial, corresponds to line 15.

In short, the marginalization and conditionalization algorithms encountered

in Section 4.4 are special cases of the general procedures described here, just like

191

the Forward and Backward algorithms in Section 4.2 turned out to be special cases

of the general evaluation procedure in Section 5.2.

The general procedures have the following ingredients: projection, described

above; ε-removal [Mohri, 2002b]; determinization [Mohri, 1997, sec. 3.3]; and com-

position, described in Section 5.2. Some further comments on ε-removal and de-

terminization are in order. Determinization is not strictly required, as we only

need to ensure that an automaton is unambiguous. Disambiguation is possible un-

der more general conditions [Eilenberg, 1974] than determinization [Mohri, 1997,

sec. 3.4–5], which is not always possible for weighted automata. However, gen-

eral weighted disambiguation algorithms do not seem to have received much

attention in the literature (Roche and Schabes [1997b, fig. 1.28] give a disambigua-

tion algorithm for the unweighted case), and the automata we have encountered

in practice all turned out to be determinizable.

5.4.3 Epsilon-Removal in the Real Semiring

Removing ε-transitions is often considered an integral part of determinization,

but is conceptually quite distinct. Furthermore, ε-removal is always possible, as

it only involves algebraic distance computations. The rest of this section concerns

the ε-removal algorithm for weighted automata [Mohri, 2001, 2002b]. We discuss

this algorithm in some detail because of certain flaws in Mohri’s presentation.

Our primary goal is to obtain a correct, though not necessarily efficient, algorithm

for the case of stochastic automata.

Consider the automaton shown in Figure 5.5. It is Markovian, or standardized,

in the sense discussed earlier, as the weights of all outgoing transitions (including

the final weight) sum to one for each state. However, some of these outgoing

192

0/0

eps/0.2
3/1

b/0.2

1/.2

a/0.4

eps/0.2 2/1
b/0.8

Figure 5.5: A stochastic automaton with ε-transitions.

transitions are labeled with the empty string ε (called ‘eps’ in the figure). The goal

of ε-removal is to produce an equivalent automaton without any ε-transitions.

The weighted ε-removal algorithm [Mohri, 2001] has two major steps. In a

first step, the so-called ε-closure is computed. The ε-closure of a state p is the

set C[p] of states q reachable from p via paths (possibly empty) labeled with ε,

together with the algebraic distance d[p, q] from p to q, which is the ⊕-sum of

the weights of all ε-paths from p to q. Note that q is unreachable iff d[p, q] = 0̄.

Formally, the ε-closure of p is defined like this:

C[p] = {〈q, w〉 ∈ Q×K | d[p, q] = w ∧ w 6= 0̄}

It can be viewed as a sparse row vector of the algebraic distance matrix d.

One can work with the so-called ε-subgraph of an automaton, which contains

exactly those edges labeled with ε, and compute the algebraic distance from p to

193

q in that subgraph without regard to the path labels. Mohri’s approach to com-

puting the ε-closure uses his own generic single-source algebraic path algorithm

[Mohri, 1998, 2002c]. However, as noted in Section 5.2, Mohri’s algebraic path

algorithm requires k-closed semirings and therefore does not apply to the case of

weighted automata over the real semiring. When working in the real semiring,

one can again use the generalized Floyd–Warshall algorithm from Figure 5.1 for

computing the algebraic distance matrix in the ε-subgraph of the automaton.

The second major step of Mohri’s weighted ε-removal algorithm adjusts the

transitions of a weighted automaton. The adjustment has the effect that a state p

has an outgoing transition labeled with symbol σ ∈ Σ just in case there is a state q

in the original automaton that is reachable from p via zero or more ε-transitions,

and q has an outgoing transition labeled with σ which has weight w′; the adjusted

transition then has weight w⊗w′, where w = d[p, q] is the algebraic distance from

p to q in the ε-graph, as computed during the first step.

Note that in almost all semirings p ∈ C[p]. For this not to be the case, d[p, p]

would have to equal 0̄. But d[p, p] is always of the form a∗, and so p /∈ C[p] would

mean that there is some weight a such that a∗ = 0̄ = d[p, p]. But that would allow

us to conclude:

a∗ = 0̄

1̄⊕ a⊗ a∗ = 1̄⊕ a⊗ 0̄

a∗ = 1̄

0̄ = 1̄

b⊗ 0̄ = b⊗ 1̄ for any b

0̄ = b

194

1: for each p ∈ Q do
2: E′[p] ← {}
3: ρ′[p] ← 0̄
4: for each (q, w) ∈ C[p] do
5: E′[p] ← E′[p] ∪ {(p, σ, w⊗ w′, r) | (q, σ, w′, r) ∈ E[q], σ 6= ε}
6: ρ′[p] ← ρ′[p]⊕ (w⊗ ρ[q])
7: end for
8: end for
9: return E′, ρ′

Figure 5.6: The correct ε-removal algorithm.

In other words, a∗ = 0̄ can only happen for the degenerate one-element semiring,

an uninteresting case one can easily ignore or explicitly forbid [see for example

Golan, 1992, p. 1]. Thus p ∈ C[p] for all non-trivial semirings.

An edge of a weighted automaton is a quadruple from Q× (Σ∪ {ε})×K×Q,

where Q is the set of states, Σ the alphabet, and K the (carrier set of the) weight

semiring. Let E[p] denote the outgoing edges of state p. Let ρ[p] ∈ K be the final

output function at state p. Then the set F of final states can be defined in terms of

Q, K and ρ as F = {q ∈ Q | ρ[q] 6= 0̄}.

The correct ε-removal algorithm appears in Figure 5.6. A proof of its correct-

ness was given by Mohri [2001], though it does not apply to Mohri’s own algo-

rithm, which is incorrect because it explicitly assumes that d[p, p] = 1̄, which need

not be the case in general (consider the automaton in Figure 5.5 as an example).

Mohri’s algorithm is shown in Figure 5.7. A non-essential difference is that it

keeps track of the set F of final states. It contains a glitch in the inner loop body:

the update of the outgoing edges E and final weights ρ are wrong when state q has

195

1: for each p ∈ Q do
2: E[p] ← {(p, a, w′, r) | (p, a, w′, r) ∈ E[p], a 6= ε}
3: for each (q, w) ∈ C[p] do
4: E[p] ← E[p] ∪ {(p, a, w⊗ w′, r) | (q, a, w′, r) ∈ E[q], a 6= ε}
5: if q ∈ F then
6: if p /∈ F then
7: F ← F ∪ {p}
8: end if
9: ρ[p] ← ρ[p]⊕ (w⊗ ρ[q])

10: end if
11: end for
12: end for

Figure 5.7: Mohri’s ε-removal algorithm.

been processed before state p, since then E[q] already contains updated edges not

present in the original automaton. It is obvious that Mohri’s algorithm is a special

case of the algorithm in Figure 5.6 when d[p, p] = 1̄ for all states p: since p ∈ C[p]

as discussed earlier, the update performed on line 2 of Mohri’s algorithm is just a

special case (namely p = q) of the update on line 5 of the correct algorithm.

However, the correct algorithm in Figure 5.6 also applies when d[p, p] 6= 1̄. In

particular, it applies to the automaton in Figure 5.5. In that example the non-0̄-

zero ε-distances are d[0, 0] = 0.2∗ = 1.25 and d[0, 1] = 0.2∗ × 0.2 = 0.25. After

the application of the ε-removal algorithm the weights of the transitions leav-

ing state 0 in the original automaton have been multiplied by d[0, 0] = 1.25, a

transition labeled with b going from state 0 to state 2 appears whose weight is

d[0, 1] × 0.8 = 0.2, and state 0 is now final with final weight d[0, 1] × ρ[1] =

0.25× 0.2 = 0.05. Figure 5.8 shows the resulting automaton.

196

0/.05

3/1
b/0.25

1/.2
a/0.5

2/1
b/0.2

b/0.8

Figure 5.8: An ε-free automaton equivalent to the one in Figure 5.5.

In sum, we have seen that the marginalization and conditionalization pro-

cedures first introduced in Section 4.4 apply essentially unchanged to general

stochastic transducers. Marginal automata arise as projections of transducers. In

order to obtain a conditional transducer, the relevant marginal transducer must be

made unambiguous. Formulating a general disambiguation algorithm for those

weighted transducers that have an unambiguous representation appears to be

an open problem. In practice, determinization can be used, since deterministic

transducers are necessarily unambiguous. Determinization requires weighted

ε-removal, which, until recently [Mohri, 2001], was never discussed as an inde-

pendent operation on weighted machines worthy of detailed attention. However,

even the most recent version of Mohri’s [2002b] weighted ε-removal algorithm

contains unnecessary assumptions and flaws, which were corrected in this sec-

tion.

197

5.5 Using a Joint Model for Prediction

5.5.1 MAP Decoding

The fundamental issues for MAP decoding discussed in Section 4.5 are the same

for general stochastic transducers as they were for memoryless transducers. We

had previously discussed the situation where we want to find the most likely

string x corresponding to a given string y. In the framework of the current chapter,

this can be done as follows:

1. Let T be a joint stochastic transducer. Construct a transducer A (over the

real semiring) representing the composition T ◦ Str(y) (the first projection

of A could be taken without affecting the outcome);

2. Ensure that A (over the real semiring) is unambiguous;

3. Without changing the weights of A , replace its weight semiring with the

max–times semiring (or any semiring isomorphic to it, e. g., the tropical se-

miring, which would require changing the weights using the appropriate

isomorphism from the max–times semiring);

4. Find the optimal path of A (over the max–times semiring) and read off its

label.

As discussed in Section 5.2 and Section 5.4, the first step constructs the transducer

or automaton representing the marginal distribution of y. In fact, it would be

possible to let A = T ◦ Y for more general transducers Y , which, for example,

might represent a disjunction of multiple strings. The remaining steps are as in

Section 4.5. Step 2 ensures that every string accepted by A corresponds to exactly

one successful path of A , so the best string can be obtained by finding the best

198

path. For the reasons discussed in Section 5.4, step 2 usually means determinizing

A , which is not always possible, and even if it is the result may sometimes be very

large. If step 2 is left out, the best string may be represented by multiple paths,

potentially excluding the best path (we had seen examples of this in Section 4.5).

Skipping step 2 results in the so-called Viterbi approximation. Step 3 simply spells

out the fact that the search for the best path takes place in a different semiring

which, among other things, is idempotent and naturally ordered. Step 4 uses

any best path algorithm to search for the optimal path. If the tropical semiring

was used in step 3 (which requires taking the negative logarithm of all weights)

and the new weights are all nonnegative (this is necessarily the case if T is a

Markovian transducer), then Dijkstra’s single-source shortest path algorithm can

be used in step 4, just as in Section 4.5 before.

The use of determinization in step 2 is in fact less problematic than it was in

the preceding section. Mohri [1997, p. 293] points out that machines representing

finite sets can always be determinized. So if it is known that the best string cor-

responding to a given string y is contained in a finite set X, one can construct an

automaton X accepting X and let A = X ◦T ◦ Str(y) in step 1 above. In step 2,

determinization can be performed because A is guaranteed to be determinizable.

If one is looking for the single best path, it may not matter whether an automa-

ton is determinizable, since it does not have to be expanded in full. When using

Dijkstra’s algorithm, the automaton (over the tropical semiring) only needs to be

expanded until an accepting transition out of a final state is taken. All other par-

tially expanded paths are necessarily longer (less likely), hence the algorithm can

stop early, as soon as an accepting transition is encountered.

199

5.5.2 Minimum Risk Decoding

Even if we can find the mode of a probability distribution efficiently in practice,

this may not be what we want. We had argued in Chapter 2 that symbol error

should be the preferred evaluation metric, but decoding the most likely string

minimizes string error, and does not generally minimize symbol error. The prob-

lem of minimizing symbol error has been partly addressed in the recent speech

recognition literature.

The quality of the speech transcripts produced by automatic speech recogniz-

ers is usually measured in terms of word error rate (WER), which we refer to

abstractly (Figure 2.3) as symbol error rate. However, both parameter estima-

tion and decoding for continuous speech recognition typically employ maximum

likelihood methods [Bahl et al., 1983]. The same is true of the approaches de-

scribed here: the parameter estimation procedures described in Section 4.3 and

Section 5.3 find (local) maxima of the likelihood, and MAP decoding finds (per-

haps to an approximation) the hypothesis with the highest posterior probability.

Since all models describe properties of whole strings, these training and decoding

methods minimize string error instead of symbol error.

Theoretically, it would be preferable to minimize risk , i. e. expected loss, dur-

ing parameter estimation and decoding, using an appropriate loss function such

as symbol error. While there has been some work on minimum risk parameter

estimation for speech recognition under specific loss functions [Bahl et al., 1988;

Rahim and Lee, 1997; Saul and Rahim, 2000], the procedures are often expensive

and not used much in practice.

Here we focus on minimum risk decoding, which has received more attention

lately [see Evermann, 1999, for an overview]. Suppose we are given a distribution

200

P over a discrete set of hypotheses X. Minimum risk decoding is the task of

finding a hypothesis x? = argminx R(x) whose risk R(x?) under P is minimal

among the elements of X. The risk R(x) of a hypothesis is its loss expected under

P, where L(x, x′) is the loss incurred by selecting hypothesis x when the correct

choice would have been x′. Formally:

R(x) = ∑
x′∈X

L(x, x′) P(x′) (5.2)

A concrete example may illustrate the relevant concepts. Consider a basic

alphabet Σ = {a, b, c} and let L(x, x′) be the Levenshtein distance (see page 121)

between x and x′. Furthermore, suppose P is the following distribution over Σ∗:

P(aa) = 0.3

P(ab) = 0.3

P(bc) = 0.4

P(x) = 0 for all other strings x ∈ Σ∗

In this setting the MAP hypothesis is bc. But notice that the closest contenders

both favor a as the first symbol; moreover, the disjunction of aa and ab has higher

probability than bc. Consider the expected loss R(x) for several hypotheses x ∈

201

Σ∗. Let p = (0.3, 0.3, 0.4), and so the vector dot product p · (0, 1, 2), for example, is

the risk of the hypothesis aa, since L(aa, aa) = 0, L(aa, ab) = 1, and L(aa, bc) = 2.

R(ε) = p · (2, 2, 2) = 2.0

R(c) = p · (2, 2, 1) = 1.6

R(a) = p · (1, 1, 2) = 1.4

R(b) = p · (2, 1, 1) = 1.3

R(bc) = p · (2, 2, 0) = 1.2

R(aa) = p · (0, 1, 2) = 1.1

R(ab) = p · (1, 0, 2) = 1.1

R(ac) = p · (1, 1, 1) = 1.0

It is easy to see that the minimum risk hypothesis is ac (all other hypotheses, in-

cluding infinitely many not shown here due to lack of space, have higher expected

loss). Notice that ac has probability 0 under P.

Unfortunately, minimum risk decoding is NP-complete, since it is an instance

of the so-called MEDIAN-STRING problem [de la Higuera and Casacuberta, 2000].

This is not surprising, because it is known that the intuitively simpler problem

MOST-LIKELY-STRING is already NP-complete, as mentioned in Section 4.5. Un-

like in speech recognition, this is not a major concern for letter-to-sound conver-

sion, as the problem instances are usually quite small in practice. Approximate

methods for minimum risk decoding exist that use n-best lists [Stolcke et al., 1997]

(which could be made more efficient by using a better algorithm for finding the n

best MAP hypotheses [Mohri and Riley, 2002]), or so-called “confusion networks”

[Mangu et al., 2000]; Evermann [1999] gives a detailed overview.

202

An exact algorithm was recently given by Mohri [2002a]. However, Mohri’s

algorithm may be expensive in practice (it is prohibitively expensive in theory,

with a worst case exponential running time), since it employs three separate invo-

cations of weighted determinization. What makes Mohri’s algorithm nontrivial

is the fact that Levenshtein distance is most naturally defined in terms of the op-

erations of the tropical semiring, whereas the probability distribution P is most

naturally defined in the nonnegative real semiring. Although the definition of

risk R in equation (5.2) appears to be of the same form as the definition of compo-

sition in equation (5.1), an automaton realizing R cannot be constructed naively

by composition of a transducer realizing L with an automaton realizing P, when

the weights of L are taken in the tropical semiring and those of P in the real se-

miring, as composition is only defined if the two semirings are identical. Mohri

[2002a] shows, among other things, how Levenshtein distance can be computed

in the real semiring (or, more precisely, the log semiring).

Whereas word error rate based on Levenshtein distance is the commonly used

evaluation metric in speech recognition and should therefore be the loss function

minimized during decoding (and, ideally, also during training) by a speech rec-

ognizer, the lack of a widely agreed upon evaluation metric for letter-to-sound

rules is perhaps a blessing in disguise, since one can look for an evaluation metric

that is easy to work with as a loss function for minimum risk decoding. A promis-

ing candidate is the notion of stochastic edit distance, introduced by Ristad and

Yianilos [1998] which is the (negative logarithm of the) sum of the costs of all me-

moryless alignments of two string, where the cost of an alignment is the product

of the costs of its edit operations. If the costs of edit operations are probabilities,

as they are for Ristad and Yianilos [1998], the stochastic edit distance is precisely

the (negative logarithm of the) probability of two strings being generated by a

203

memoryless stochastic transducer, as described in Section 4.2. In other words, the

stochastic edit distance is computed over the nonnegative real semiring, while or-

dinary edit distance is computed over the (nonnegative) tropical semiring. Both

can be evaluated using the generic Forward algorithm from Figure 4.1.

We propose to use a variant of Ristad and Yianilos’s [1998] stochastic edit dis-

tance as the loss function for minimum risk decoding. To simplify matters, we

use a probability distribution more or less directly, without taking negative loga-

rithms. More precisely, assume that the loss function L is of the form

L(x, x′) = 1− P′(x | x′),

where P′ is a probability distribution conditional on x′. Note that L is nonnega-

tive and can be interpreted as the probability of not selecting hypothesis x given

that the true hypothesis is x′. Furthermore, as P′ is a probability distribution, it

can potentially be constructed by training on samples of similar or confusable

strings using the methods described in Section 4.3 and Section 4.4. Under these

assumptions, risk minimization can be simplified like this:

argmin
x

R(x) = argmin
x

∑
x′

L(x, x′) P(x′)

= argmin
x

∑
x′

(1− P′(x | x′)) P(x′)

= argmin
x

(
∑
x′

P(x′)−∑
x′

P′(x | x′) P(x′)

)

= argmin
x

(
1− [π1(P′ ◦ P)](x)

)
= argmax

x
[π1(P′ ◦ P)](x)

204

Crucially, P′ and P are both probability distributions expressed in the real semi-

ring (or, equivalently, the log semiring). Unlike in the situation where L is Leven-

shtein distance, the simplifying composition P′ ◦ P is well defined. In fact, if we let

A = π1(P′ ◦ P) we can continue with steps 2 through 4 of the decoding procedure

outlined at the very beginning of this section. Step 2 involves disambiguation or

determinization, but this is the only expensive computation involved, whereas

Mohri’s decoding algorithm under Levenshtein loss uses up to three determiniza-

tion steps.

Continuing with our earlier example, let the conditional distribution P′ be rep-

resented by a memoryless stochastic transducer with the following parameters:

θ(#) = 0.94 θ(b, ε) = 0.02

θ(ε, a) = 0.06 θ(b, a) = 0.27

θ(ε, b) = 0.06 θ(b, b) = 0.33

θ(ε, c) = 0.06 θ(b, c) = 0.27

θ(a, ε) = 0.02 θ(c, ε) = 0.02

θ(a, a) = 0.33 θ(c, a) = 0.27

θ(a, b) = 0.27 θ(c, b) = 0.33

θ(a, c) = 0.27 θ(c, c) = 0.27

These are approximately the parameters of the conditional transducer (see Sec-

tion 4.4) corresponding to a joint transducer which generates exact matches with

probability 0.11, substitutions with probability 0.09, insertions and deletions with

probability 0.02, and which halts with probability 0.01.

205

A stochastic automaton realizing the posterior distribution P is shown in Fig-

ure 5.9. The distribution P is similar to the one occurring in the earlier example,

with most of its mass (more than 92%) assigned to the strings aa, ab, and bc (the rel-

evant transitions appear in bold in Figure 5.9), but P also reserves a small portion

of the total probability mass for the infinitely many other strings. In particular, P

assigns the following probabilities to strings:

P(aa) = 0.280427

P(ab) = 0.280427

P(bc) = 0.366951

P(ac) = 0.001475

P(x) ≤ 0.01 for all other strings x ∈ Σ∗

As in the previous example involving Levenshtein loss, the MAP hypothesis under

P is the string bc, but the minimum risk hypothesis is the string ac, which is not

very probable according to P alone.

In conclusion, we have described exact and approximate maximum a posteri-

ori decoding and minimum risk decoding for stochastic transducers. While the

concept of minimum risk decoding is not new per se, it has, to our knowledge,

never been applied to letter-to-sound conversion. A novel contribution of this

section is the suggestion to employ a loss function that can be naturally expressed

in the real semiring, for example, loss defined in terms of conditional probabili-

ties. When both the loss function and the posterior distribution are represented

as weighted automata over the real semiring, the risk function can be expressed

as their composition. Minimum risk decoding in such a setting is conceptually

206

0.01

0.01

a/0.59

0.01
b/0.39

0

c/0.01

c/0.01

0.97a/0.49

b/0.49

a/0.01

b/0.01

0.97

c/0.97

0.25
 /1.00

a/0.01

b/0.01

c/0.01

a/0.01

b/0.01

c/0.01

c/0.25

b/0.25

a/0.25

Figure 5.9: A stochastic automaton representing the posterior distribution P used
in minimum risk decoding.

207

much simpler than when traditional Levenshtein distance is used as the loss func-

tion. Furthermore, using probabilities (or the so-called stochastic edit distance)

instead of Levenshtein distance may potentially give the loss incurred by a pair

of strings a natural interpretation, for example, as the probability that the second

string is mistaken (misread, misperceived, mispronounced, etc.) as the first string.

A similarly natural interpretation of Levenshtein distance does not seem possible.

5.6 Conclusion

This chapter generalized Ristad and Yianilos’s [1998] approach described in Chap-

ter 4 to the general case of stochastic rational transducers with arbitrary state

graphs. Ristad and Yianilos [1998] had merely hinted at the possibility of such a

generalization without providing any details.

The discussion touched on the same fundamental issues that had been intro-

duced and worked out for the memoryless case in Chapter 4. Algorithms for

solving the four fundamental problems for stochastic transducers (evaluation, de-

coding, estimation, conditionalization) were presented within the framework of

weighted finite state transducers.

The problem of computing the total weight or probability mass of a transducer

was discussed in Section 5.2. Several algorithms may be applicable, depending

on the topology of the transducer and on properties of its weight semiring. In the

worst case, a cubic-time all-pairs algebraic path algorithm must be used. While

this is not an option for large vocabulary continuous speech recognizers [Mohri,

2002c], the transducers used in letter-to-sound applications are usually very com-

pact and therefore not problematic. The worst case can arise quite easily, since

208

general stochastic transducers may have cycles, and because real numbers repre-

senting probabilities have properties that prevent standard textbook algorithms

from being applicable. We pointed out that an appropriate version of an all-pairs

algebraic path algorithm is applicable and can be used as part of evaluation and

parameter estimation.

Parameter estimation may appear to be more complex in the presence of cy-

cles, but Section 5.3 showed that this is not actually the case. The EM algorithm

given by Ristad and Yianilos [1998] for memoryless transducers is still applica-

ble, but the computation of expected counts is more involved. Compared with

Eisner’s [2001] parameter estimation algorithm, the algorithm presented in Sec-

tion 5.3.1 is cheaper, but slightly less general. Whether this loss of generality

plays any role in practice remains to be seen.

Conditionalization and decoding require unambiguous automata, for which

the lack of a general weighted disambiguation algorithm was noted. Weighted

determinization [Mohri, 1997] is used instead, after ε-removal has been carried

out. Some glitches in Mohri’s [2002b] ε-removal algorithm were corrected in Sec-

tion 5.4.3.

We proposed the use of minimum risk decoding for stochastic transducers

and in particular for letter-to-sound applications. Classical Levenshtein distance

is not easy to work with when used as a loss function for decoding. A closely

related alternative loss function based on stochastic memoryless transducers rep-

resenting conditional distributions was suggested, which is easier to work with,

results in simpler decoding algorithms, and has a more natural interpretation

than Levenshtein distance. However, as noted in Section 2.3.3, more empirical

work is needed in order to derive a loss function defined in terms of plausible

confusion probabilities.

209

CHAPTER 6

EXPERIMENTS

6.1 Introduction

In the preceding three chapters we had mainly focused on theoretical and algorith-

mic issues surrounding the classifier-based and the transduction-based approach

to letter-to-sound conversion. In this chapter we return to empirical and practi-

cal issues. Section 6.2 investigates the relationship between prediction error and

symbol error, which are often closely connected in practice. If there is a close

enough connection between symbol error and prediction error, then classification-

based approaches can be seen as heuristics for minimizing symbol error indirectly,

by minimizing prediction error. In Section 6.3 we discuss an exhaustive search

strategy that can be used to minimize string error directly for certain small prob-

lems. In Section 6.4 exhaustive search is replaced by a greedy heuristic, which

can be applied for larger problems. These two sections also address the question

when minimizing string error is useful in practice. Section 6.5 establishes best-

case performance results for classifier-based approaches. Such best-case bounds

are important for deciding whether existing approaches can still be improved, or

whether they are already close to optimal on a given data set. Section 6.6 assesses

the effect of the Viterbi approximation, which had been discussed at two points in

210

Chapter 5, on the performance of the transduction-based approach. The best over-

all training and decoding strategy is from that section is then compared with the

classifier-based approach in Section 6.7. Finally, we mention the issue of length

(or duration) modeling as an open problem for modeling with stochastic finite

state transducers in Section 6.8.

6.2 Is Prediction Error Overly Fussy?

As discussed on page 42, prediction error is sensitive to irrelevant differences

between the predicted transcription and the reference transcription of a word.

Specifically, when padding symbols are present in the transcription strings, it is

possible that the predicted transcription and reference transcription differ only in

the placement of padding symbols, resulting in spurious prediction errors, while

the corresponding phoneme strings derived from the transcription strings are ac-

tually identical.

The following experiment shows that spurious prediction errors do occur reg-

ularly in practice. Since prediction error is only meaningful for aligned data, the

development and evaluation data were taken from the aligned NETtalk data set

(see Section 2.2.2). The presence of spurious prediction errors is indicative of in-

consistent alignment choices in the evaluation data.

After removal of stress information, the NETtalk dictionary consists of 19,940

unique entries (19,802 unique words, due to the presence of homographs). In

the following experiments, the data are partitioned into two equal parts, each

containing 9,970 entries, with one part being used for training and the other for

evaluation.

211

The clearest case of spurious prediction errors is a situation where the predic-

tion error for a given word is nonzero, but the string error is zero (and therefore

the symbol error is too). Repeated partitioning (50 times) of the NETtalk data into

equal training and evaluation data was carried out. For each partition of the data,

a classifier with a seven-letter context window was trained on the development

portion and tested on the evaluation portion of the partitioned data, and the num-

ber of perfectly predicted words with nonzero prediction error was recorded. On

average, 4.3 words (N = 50, σ = 2.33) incurred spurious prediction errors; the

per-trial numbers ranged from 1 to 9, i. e., were never zero. Spurious prediction er-

rors in the test data point to inconsistent alignments, which could be corrected by

changing the test data, substituting the predicted pronunciations for the reference

pronunciation, since they are both correct and differ only in alignment details.

A less clear case can be made by comparing raw prediction error with raw

symbol error (Levenshtein distance). One cannot compare prediction error rate

with symbol error rate, since prediction error rate is raw prediction error divided

by the number of letters, whereas symbol error rate is raw symbol error divided

by the number of reference phonemes (see Section 2.3). When a transcription string

is predicted with a single prediction error, this always corresponds to one or two

symbol errors: a single mispredicted transcription symbol corresponds to zero,

one, or two phonemes, and therefore to one or two insertions, deletions, or substi-

tutions when comparing the predicted phoneme string to the reference phoneme

string, so a raw prediction error of 1 potentially underestimates raw symbol error.

If the absolute number of prediction errors is greater than 1, however, prediction

error can overestimate symbol error, since two mispredictions may cancel out, as

discussed in Section 2.4.1.

212

In a similar setting as before, the number of words was recorded for which

the raw prediction error exceeds the raw symbol error. This was repeated for

several 1:1 splits of the NETtalk data. On average, prediction error overestimated

symbol error for 77.1 words (N = 50, σ = 8.55). However, the number of words

for which symbol error exceeds prediction error was always larger. This suggests

that a good heuristic for optimizing symbol error would be to reduce the number

of errors made when predicting multi-phone symbols.

In sum, prediction error does diverge from symbol error in practice, but the

divergence is not very large and may be tolerable. If a divergence is present it

may indicate a problem with the training data, depending on the direction of the

divergence. If prediction error exceeds symbol error for one word, there proba-

bly are spurious alignment differences that could be removed if changing the test

data is an option. The case of symbol error exceeding prediction error can poten-

tially be dealt with by using cost-sensitive training procedures for the underlying

classifier, since the misclassification cost for multi-phoneme symbols is clearly

higher than for ordinary transcription symbols. An example of a cost matrix for a

subset of the NETtalk transcription symbols (see Figure 2.2) appears in Figure 6.1.

Each cell holds the Levenshtein distance between the IPA correspondences of the

transcription symbols for its row and its column.

The matrix of Levenshtein distances between individual transcription sym-

bols was used as part of a comparison between cost-sensitive training and ordi-

nary training of a classifier-based letter-to-sound converter. As before, the train-

ing and evaluation data were obtain by a random 1:1 split of the NETtalk data set,

resulting in two disjoint dictionaries containing 9,970 entries each. Throughout

this comparison a symmetric three-letter window was used, in other words, only

the immediately preceding and the immediately following letter were considered

213

k s S K X ! -

/k/ /s/ /S/ /kS/ /ks/ /ts/ / /

k /k/ 0 1 1 1 1 2 1
s /s/ 1 0 1 2 1 1 1
S /S/ 1 1 0 1 2 2 1
K /kS/ 1 2 1 0 1 2 2
X /ks/ 1 1 2 1 0 1 2
! /ts/ 2 1 2 2 1 0 2
- / / 1 1 1 2 2 2 0

Figure 6.1: Excerpt from the cost matrix used for cost-sensitive training and eval-
uation of a classifier on the NETtalk data set.

when predicting the pronunciation of a given letter in context. A backed-off ma-

jority classifier provided the baseline for this comparison: during training this

classifier stores the labels encountered for all context windows of varying sizes

up to the maximal window size (three, in this case), and during evaluation it

labels each window with its majority label, provided it had seen that window

during training, otherwise backing off to smaller window sizes. This is similar to

Daelemans and van den Bosch’s [1997] IGTREE algorithm and to other decision

tree learners that do not use pruning (see the discussion on page 66). The first

non-baseline classifier in this comparison is the decision tree learner C4.5 [Quin-

lan, 1993], for which we had determined through cross-validation on the training

data that disabling pruning and using unpruned trees for classification is indeed

advantageous, since the pruned decision trees failed to beat the baseline. The

ordinary C4.5 algorithm is not cost-sensitive. However, general techniques exist

that turn arbitrary classifier learners into cost-sensitive classifier learners. The

214

Pr. err. Pr. cost Sym. err. Str. err.
abs. rel. sum avg. abs. rel. abs. rel.

Baseline 12218 0.1673 12579 0.1722 12450 0.1705 7303 0.7325
C4.5 12149 0.1663 12510 0.1713 12395 0.1697 7289 0.7311
C4.5 + MetaCost 12201 0.1671 12554 0.1719 12423 0.1701 7292 0.7314

Figure 6.2: Comparison between ordinary training and cost-sensitive training of
classifiers.

second classifier in this comparison is a combination of one such meta-classifier,

namely MetaCost [Domingos, 1999], with ordinary C4.5 (using the same settings

as before, i. e., without any pruning).

The results of the comparison are shown in Figure 6.2. The four columns

indicate, respectively, prediction error, prediction cost, symbol error, and string

error. The first thing to note is that both classifiers beat the baseline across all

columns, although the improvements over the baseline are small. Crucially, the

cost-sensitive classifier based on MetaCost controlling C4.5 performs worse than

plain C4.5. This failure of cost-sensitive training does not rule out the possibility

that other cost-sensitive learners would be more successful. There is still some

advantage in performing cost-sensitive evaluation however: the second column

lists the total and average prediction costs, which are only available with cost-

sensitive evaluation. Because of the choice of the cost matrix, the total prediction

cost is an upper bound for raw symbol error. In other words, in most practical

situations raw symbol error will be bounded from below by raw prediction error

and from above by the total prediction cost.

215

In Chapter 2 we had presented general theoretical arguments involving some-

what artificial data sets to show that minimizing prediction error (likewise for

prediction cost) does not generally minimize symbol error or string error. The

present section discussed several empirical aspects of the discrepancy between

prediction error and symbol error in conjunction with a commonly used and

more or less natural data set. We saw that in this specific situation raw predic-

tion error and raw symbol error are typically not too far apart, but any observed

difference should be analyzed, as it may indicate problems with the data, specif-

ically inconsistent alignments. The answer to the question that forms the title of

this section is negative: raw prediction error tends to underestimate raw symbol

error in practice. If an upper bound on symbol error is needed one can carry out

a cost-sensitive evaluation, where the misclassification costs are edit distances

between the phoneme strings represented by the transcription symbols. While

minimizing prediction error had some effect on the other evaluation measures,

the relationship was indirect; the next section focuses on the direct minimization

of an evaluation measure.

6.3 Brute-Force Word Error Minimization

The present section investigates the feasibility of minimizing empirical error di-

rectly through combinatorial search. Theoretical results demonstrating the gen-

eral hardness of a problem, of the sort that we had seen in Chapter 3, may not

reveal much about the problem instances one encounters in practice. For exam-

ple, we have no reason to believe that pronunciation dictionaries for natural lan-

guages would correspond to intricate Boolean formulas specifically designed to

trigger the worst-case behavior of a blind search algorithm. While blind search

216

t /t/ 282
T /T/ 18
S /S/ 9
C /Ù/ 8
- 8
D /D/ 6

Total 331

Figure 6.3: Phonemes corresponding to 〈t〉 in the training data.

may be an option in practice, we can do even better if we take into account any

inherent structure of the problem.

The specific problem is to find the globally optimal morphism that maximizes

string (word) accuracy on the training data. In the following discussion, we use

a 2,000 word random sample of the NETtalk data [Sejnowski, 1988] as training

data. Since the NETtalk dictionary is aligned, we are dealing with an instance

of MAX-VFMC. We decide to skip any preprocessing steps, i. e., to use no input

context. Now consider, for example, the phonemes aligned with the letter 〈t〉.

Figure 6.3 lists those phonemes (in the NETtalk transcription) together with occur-

rence counts.

The occurrence counts reflect the number of words in which the phoneme oc-

curred together with the letter 〈t〉. In fact, we can eliminate words like 〈that〉,

transcribed as /D-æt/ or /D-@t/ (the NETtalk dictionary lists both pronunciations),

in which multiple occurrences of a letter, in this case 〈t〉, correspond to different

phonemes, since no morphism in our search space has any hope of correctly pro-

ducing the correct pronunciation.

217

The above table tells us that even in the most optimistic case we are guaran-

teed to make mistakes: if the optimal morphism were to map the letter 〈t〉 to the

phoneme /t/, there would be 18 + 9 + 8 + 8 + 6 = 49 words whose pronunciations

it would mispredict. In other words, for each choice of how to pronounce the let-

ter 〈t〉 we obtain upper bounds on the accuracy of the overall morphism. In this

case, we know that the overall accuracy cannot exceed 2, 000− 49 words. (Lower

bounds are less useful, since it is very easy to find morphisms that mispredict on

virtually all of the words.)

This provides us with a recursive scheme for refining the upper bound. We ex-

plore partial morphisms and start with an empty morphism and an upper bound

of 2,000 words. We first consider all phonemes corresponding to, say, the let-

ter 〈t〉. For each choice of phoneme we obtain a new bound and eliminate all

training data that are mispredicted by the current choice. We recursively consider

all other letters. Doing this naively would mean that we would have to explore

approximately 19 trillion morphisms for this data set. But since we keep track of

bounds, we can use a branch-and-bound strategy to prune away large subtrees of

the search space. The globally optimal morphism must, by definition, be at least

as accurate as any other morphism. This means that those parts of the search

space can be eliminated for which the accuracy bound falls below the accuracy of

the best feasible solution found so far.

A greedy strategy can be used to find an initial feasible solution. In this case,

it is the morphism that maximizes prediction accuracy, which maps each letter

to the phoneme it most frequently co-occurs with. This morphism is shown in

Figure 6.4. It correctly predicts the pronunciation of 65 words in the training set.

This initial solution provided a useful bound for a subsequent branch-and-

bound search for the globally optimal solution. The search took less than a minute

218

〈a〉 @ 〈n〉 n

〈b〉 b 〈o〉 o

〈c〉 k 〈p〉 p

〈d〉 d 〈q〉 k

〈e〉 - 〈r〉 r

〈f〉 f 〈s〉 s

〈g〉 g 〈t〉 t

〈h〉 - 〈u〉 -

〈i〉 I 〈v〉 v

〈j〉 J 〈w〉 -

〈k〉 k 〈x〉 X

〈l〉 l 〈y〉 i

〈m〉 m 〈z〉 z

Figure 6.4: Letter-to-phoneme mapping that optimizes prediction accuracy.

on commodity hardware and is in our experience also feasible on much larger

data sets. It revealed two tied solutions that correctly predict 93 words of the

training dictionary. The tie was broken on a disjoint 1,000 word held-out data set

(the only difference between the two morphisms was the pronunciation assigned

to the letter 〈h〉). The letters for which the (now unique) globally optimal solution

differs from the initial greedy solution are shown in Figure 6.5.

We selected 2,000 unseen words for evaluation and compared the accuracy

of the greedy solution and the globally optimal solution. Performance on the

unseen evaluation data was only slightly worse than on the training data. The

results are summarized in Figure 6.6. More importantly, we wanted to make sure

that the classification assigned by the optimal morphism is indeed different from

the initial solution, from which it differs in only the six letters shown in Figure 6.5.

219

〈e〉 E 〈o〉 a

〈h〉 h 〈u〉 ^

〈k〉 - 〈w〉 w

Figure 6.5: Letter-to-phoneme mapping that optimizes word accuracy (only show-
ing letters for which it differs from Figure 6.4).

We applied the McNemar test [Dietterich, 1998] to the predictions of the two clas-

sifiers on the evaluation data, which confirmed that the differences are clearly

significant at the 1% level (χ2 = 10.0119 at 1 degree of freedom, so p < 0.00156,

i. e. significance is approaching the 0.1% level).

In sum, we have seen an example for which exhaustive search is both feasible

and beneficial, since the error reduction on the training data results in an error

reduction on unseen test data. However, since the induced mappings do not use

any context for prediction, they are very simple and the search space is compara-

tively small (a bit less than 20 trillion hypotheses). Using a single letter of context

for prediction results in a much larger search space (more than 10132 hypotheses)

that cannot be searched exhaustively, not even with the minimal guidance pro-

vided by branch-and-bound. We noticed that the initial greedy solution can be

improved by local hill-climbing search, and for the simple experiment reported

above the local optimum it found was confirmed to be identical to a global opti-

mum found by branch-and-bound. It is therefore reasonable to suspect that local

search would be useful in situations where exhaustive search is no longer possi-

ble. This is the topic of the next section.

220

Training Evaluation
abs. rel. abs. rel.

Greedy solution 65 3.25% 59 2.95%
Optimal solution 93 4.65% 89 4.45%

Figure 6.6: Comparison of word accuracy between the greedy and the optimal
solution.

6.4 Local Search

Local search, or hill-climbing search, is an algorithm design technique with many

applications [Aho et al., 1983, sec. 10.5] and is used here as a heuristic method for

solving combinatorial optimization problems [Papadimitriou and Steiglitz, 1998;

Hromkovič, 2001]. The idea is to define a local change neighborhood, a set of trans-

formations of feasible solutions that produce new feasible solutions. During one

iteration of local search, the change neighborhood is searched exhaustively, and

the change that results in the largest improvement of the objective is applied. This

is repeated iteratively until no further improvements can be found.

Local search was used to construct initial feasible solutions for the exhaustive

search described in the previous section. Surprisingly, the solutions found by

local search were always confirmed to be globally optimal by subsequent exhaus-

tive searches. Since local search is generally more tractable than exhaustive global

search, this is a welcome result, since it suggests that local search may suffice even

when the optimality of a solution it produces cannot be confirmed by exhaustive

search.

221

The following experimental setup, similar to that of Bakiri and Dietterich

[2001] was used. A random 1,000 word subset of the NETtalk data was selected

for initial training; another, disjoint 1,000 word subset for local search; and a third,

disjoint 1,000 word subset for evaluation. An initial solution that optimizes pre-

diction accuracy was obtained on the basis of the first training set. The classifier

that was learned is a simple variation on standard decision trees [Quinlan, 1986],

with the additional restriction that the features used for prediction are letters; fur-

thermore, a new letter feature can only be inserted into the tree if it is contiguous

to a letter feature already in the tree.

Then local search was carried out on the second training set. The change neigh-

borhood is defined by the non-majority labels at the leaves of the initial decision

tree. In other words, if a leaf of the tree was contained several class labels, the

initial solution would choose the dominant label, and the runners-up would be

added to the local change neighborhood for that leaf. During local search, these

alternatives are tentatively inserted into the tree, which is then evaluated on the

second training set. The objective during local search was to minimize string er-

ror.

Local search was able to reduce string error rate considerably on the training

data, from 52.4% to 46% after 56 iterations, as shown in Figure 6.7, while the

relative increase of string error and prediction error was much smaller. However,

cross-validation on a held-out 1,000 word data set revealed that string error was

almost unaffected, fluctuating only slightly around its initial value. The string

error on a third set of unseen test data was 78.9% initially, and 79.9% after local

search had found an optimum.

There are two possible conclusions one might draw from this. It could plau-

sibly be the case that minimizing empirical string error has no beneficial effect

222

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 5 10 15 20 25 30 35 40 45 50 55

st
ri

n
g

 e
rr

o
r

ra
te

 (
p

er
ce

n
t)

number of search iterations

training
cross-validation

Figure 6.7: Minimization of string error using local search.

223

on the true error of the trained classifier. As we had seen in Section 2.4, and es-

pecially in Figure 2.11, minimizing string error often means making decisions in

a way that increases prediction error and symbol error on words whose pronun-

ciation one cannot expect to correctly predict. Such words are then “sacrificed”,

which potentially opens up new possibilities for mappings that reduce string er-

ror on other words. Another explanation for why minimizing empirical string

error has little effect in the present case might be that we did not manage to find

the true global minimum, because local search is not an admissible search method.

This is less likely, but since the search for a better hypothesis than the one found

by local search proved to be intractable in practice, there is no guarantee that a

better solution, should one exist, would not result in a different performance on

an unseen test set. Either way we are forced to conclude that minimizing string

error is not useful in this case.

6.5 Bounds on the Performance of Classifier-Based
Approaches

The preceding sections painted a rather bleak picture, suggesting that improve-

ments to the quality of classifier-based approaches to learning letter-to-sound con-

verters are somewhat elusive: in Section 6.2 we tried cost-sensitive classification

without seeing any improvements in the quality of the predicted pronunciations;

in Section 6.3 we saw that exhaustive search for an optimal classifier is only pos-

sible for very small problem instances; the local search heuristics described in

Section 6.4 can deal with larger problems and managed to reduce empirical error

on the training data, but the improvements did not generalize to cross-validation

224

and evaluation data. We may therefore wonder whether the classifier-based ap-

proaches are already performing close to a theoretical optimum, or whether large

improvements are still possible. Since purely data-driven methods rely exclu-

sively on their training data for generalization, any information absent from the

training data cannot be used to classify future instances. We use this observation

to establish empirical performance bounds for classifier-based approaches, ask-

ing the question whether information that is necessary for correct classification

was completely absent from the training data.

We start out by asking whether the letter–phoneme pairings observed in the

training data are in principle sufficient. In other words, are we likely to encounter

a significant number of previously unseen letter–phoneme pairs in the future? A

quantitative answer to this question immediately translates into a performance

bound – though by no means a tight bound – since most classifier-based ap-

proaches cannot predict phonemes that were never associated with a particular

letter in the training data.

One way to answer this question is to measure classification accuracy for a clas-

sifier that predicts a phoneme based solely on the corresponding letter, i.e., uses

a sliding window of size 1. To obtain a performance bound, we make use of an

oracle during classification (in the speech recognition literature this setup would

be called a “cheating experiment”). If at all possible, the oracle magically selects

the correct phoneme and the classifier outputs the oracle’s choice as its prediction.

But the oracle is not omniscient; it only chooses from among the phonemes that

are known to have been associated with the given letter in the training data, so

any unknown association will result in a classification error.

We again use the NETtalk data set without stress information and after the re-

moval of duplicate entries that are only distinguished by different stress patterns,

225

leaving us with 19,940 unique entries. Our evaluation method is based on 5-fold

cross-validation on the entire data set. After ten iterations of cross-validation we

arrived at an estimate of 26.8 classification errors (standard deviation 4.1) for the

146,473 letters in the data, corresponding to a classification accuracy of 99.98%.

This means that any realistic classifier (i. e. one that does not consult an oracle) is

unlikely to ever perform at 100% accuracy, due to a small but nonzero number of

unseen letter–phoneme combinations.

Although this demonstrates that almost all of the relevant pairings have been

seen and the correct phoneme could, in principle, be chosen from among those

paired with a given letter, we need to specify how exactly that choice should be

made. The performance of instance-based learners depends one the size of the

neighborhood and the distance metric. Decision trees perform differently at var-

ious levels of pruning. Performance of backed-off n-gram models [Fisher, 1999]

varies with the choice of back-off strategy. The underlying question is always

how much information goes into making the classification decision. For example,

if we look at the letter 〈p〉 without any information about context, we might pre-

dict a phoneme /p/ as its pronunciation. But that guess might be different if we

knew that 〈p〉was followed by an 〈h〉. And we might revise our guess again if we

knew that 〈p〉 occurred in the context of 〈haphazard〉.

When using a large window size, typically up to 7 as in [Sejnowski and Rosen-

berg, 1987], but sometimes as large as 15 [Bakiri and Dietterich, 2001], in prin-

ciple any subsequence of the letters in a window may be used for prediction.

Since the number of subsequences is exponential in the window size, many ap-

proaches only use contiguous substrings that contain the focus letter. This restric-

tion, which can be justified empirically [van den Bosch and Daelemans, 1993],

results in a number of contexts quadratic in the window size. On the other hand,

226

 26

 5534

 50301

 145656

 15 13 11 9 8 7 6 5 4 3 2 1 0

 1

 1.67

 6.23

292521171397531

n
u

m
b

er
 o

f
d

is
ti

n
ct

 w
in

d
o

w
s

av
er

ag
e

am
b

ig
u

it
y

 p
er

 w
in

d
o

w

context size (letters)

window size (letters)

distinct windows
per-window ambiguity

Figure 6.8: Number of distinct windows and average ambiguity per window as
functions of context/window size.

the number of distinct windows a classifier has to store or analyze may in the-

ory grow as an exponential function of the maximum window size used by the

classifier. However, this number is always bounded by the amount of available

training data. Figure 6.8 shows that the number of distinct windows as a func-

tion of context size quickly approaches its empirical maximum (the number of

letters in the training data). We can also see that the average ambiguity per win-

dow approaches unity, which means that for the vast majority of windows there

is precisely one label associated with it in the training data.

227

The setup is now exactly as before: given a maximum allowable window size,

the classifier learner scans its training data and stores all context windows and the

phonemes associated with them. During classification, an oracle chooses one of

the matching stored windows and predicts the phoneme that was most frequently

associated with it in the training data. This provides an upper bound on the clas-

sification accuracy of decision trees, backed-off n-gram models, instance-based

learners, etc.

For a comparison with Bakiri and Dietterich [1993] we replicated their evalu-

ation methodology: many of their experiments are based on training on a 1,000

word dictionary and evaluating on a second, disjoint 1,000 word dictionary. Us-

ing an oracle, we obtain a performance bound of 94.64% prediction accuracy and

68.57% string (word) accuracy for a seven-letter window. The baseline system of

Bakiri and Dietterich [1993] achieves only 81.3% prediction accuracy (which they

refer to as ‘phonemes correct’), suggesting that there may be considerable room

for improvement. Figure 6.9 shows bounds on prediction error and string error

as functions of context size (note that the y-axis is logarithmic and that error bars

indicate standard deviation). We can see that prediction error never falls below

5%, which is partly due to the fact that the classifiers were trained on a rather

small dictionary comprising only 1,000 words. On the other hand, the maximally

possible prediction accuracy exceeds even that of the best classifier built by Bakiri

and Dietterich [1993].

Their best-performing system, which uses a 15-letter window, was trained

on 19,002 words and achieves 93.7% prediction accuracy [Bakiri and Dietterich,

1993, p. 44]. We trained on 18,940 words (since we ignore stress we use a slightly

smaller data set) and obtain an upper bound of 98.2%. This tells us that, in theory,

the error of the best system developed by Bakiri and Dietterich [1993] could be

228

 1

 5.9

 10.4

 37.5
 55.1

 97.3

 0 1 2 3 4 5 6 7

 5.35

 31.23

15131197531

er
ro

r
ra

te
 (

p
er

ce
n

t)

context size (letters)

window size (letters)

string error
prediction error

Figure 6.9: Performance bounds as functions of context/window size for 1,000
words of training data.

229

 1

 2.7

 8.9

 17.1

 37.5
 49.3

 97.2

 0 1 2 3 4 5 6 7

 1.6

 10.1

15131197531

er
ro

r
ra

te
 (

p
er

ce
n

t)

context size (letters)

window size (letters)

string error
prediction error

Figure 6.10: Performance bounds as functions of context/window size for approx.
19,000 words of training data.

reduced by a factor of three or four. Figure 6.10 plots bounds on prediction error

and string error against context size, this time for a training dictionary with al-

most 19,000 entries. Compared with Figure 6.9 the maximally possible accuracy

is much higher due to the larger training set, yet there clearly still exists a per-

formance ceiling at around 98.5% prediction accuracy and 10% word accuracy. In

other words, even if the theoretically best possible performance could be achieved

for this class of models, the resulting letter-to-sound converter would still get the

pronunciation of one out of every ten words in the dictionary wrong.

230

The performance of a classifier-based converter depends both on the amount

of context used for prediction and on the amount of available training data. Fig-

ure 6.9 and Figure 6.10 showed two single-dimensional snapshots of a multidi-

mensional function that depends also on the size of the training set. In Figure 6.11

we plot the lower bound on prediction error against both context size and training

set size. The important aspect of this figure is that the lower bound has leveled

off for five or more letters of context and 16,000 or more words in the training

dictionary, so that prediction error is unlikely to ever drop below 1.5%. But since

the average word in the NETtalk data set contains about 7.3 letters, and assum-

ing prediction errors are independent, this means that string (word) error will

remain above 10%. In practice performance is likely going to be worse, since

these bounds were derived under unrealistic assumptions involving oracles that

can make use of atypical and infrequent patterns in the training data.

Now that the best-case performance results of the approach under discussion

have been delineated, there are two possible lines of investigation. First, one

could strive to refine existing techniques and push them as close as possible to

their theoretical limits. The comparison with Bakiri and Dietterich’s [1993] work

indicates that there is still much room for possible improvements, though this

comparison does not directly lead to suggestions regarding where to look for im-

provements. Second, one can also look for different approaches with better best-

case performance bounds, hoping that the practically achievable performance is

higher than for the classifier-based approach described here.

The literature contains relatively few attempts to identify rigid performance

bounds. For example Brill et al. [1998] conduct experiments to determine what

kinds of improvements on n-gram language models are possible, but they do

not establish clear upper bounds. Within the area of text-to-speech conversion,

231

 18 16 14 12 10 8 7 6 5 4 3 2 1

training set
(k words)

 0
 1

 2
 3

 4
 5

 6
 7

context size
(letters)

 1

 2

 4

 8

 16

 32

phoneme error
(percent)

Figure 6.11: Bound on prediction error as a function of both context/window size
and training set size.

232

Marchand and Damper [2000, sec. 7.1] investigate upper and lower bounds for

decoding strategies used in analogical modeling, which only addresses a special-

ized subproblem of letter-to-sound conversion. Damper [2001b, p. 20] suggests

that evaluating a letter-to-sound converter on its training data set can be seen as

establishing an upper bound on its performance. However, such a bound is nec-

essarily very optimistic, as it does not take differences between training data and

evaluation data into account. But it is precisely the existence of such differences

that makes the letter-to-sound conversion problem hard, for both humans and

machines, as there are always words whose pronunciations could not have been

predicted on the basis of past experience.

Ideally we would also like to establish similar bounds for the transduction-

based approach, which we turn to next. However, in that approach one usually

models the probability of any conceivable transduction, which means that very

unlikely pronunciations that could not have been predicted from any information

in the training data are usually still present in hypothesis graphs. If hypothesis

graphs are pruned to remove unlikely candidates, the true pronunciation of a

word might drop out, which would then contribute to a performance bound, as

that would reveal a shortcoming of the model. We will see an example of this

later on.

6.6 Effects of Viterbi Training and Decoding

The rest of this chapter is concerned with the transduction-based approach to

letter-to-sound conversion developed in Chapter 4 and Chapter 5. We begin with

a comparison of various internal issues related to training (parameter estimation)

and decoding of stochastic finite state transducers. A comparison between the

233

transduction-based approach and classifier-based approaches will follow in Sec-

tion 6.7.

The possibility of taking shortcuts during the training of stochastic transdu-

cers had been pointed out at the end of Section 4.3.1. The choice is between

proper EM training and a heuristic variant of it, so-called Viterbi training. A sim-

ilar approximation is possible during decoding, as described in Section 4.5 and

Section 5.5, which can either find the best string (MAP decoding) or the label of

the best path (Viterbi decoding).

Here we compare the effects of using Viterbi training vs. proper EM training,

and of Viterbi decoding vs. MAP decoding. Two disjoint 1,000 word subsets of

CMUdict were selected as training and test data. A stochastic transducer with

one-letter memory was trained on the training data and evaluated on the test

data.

Before training, the model parameters were initialized with uniform random

values on the unit interval, normalized, and saved. Then 20 iterations of EM train-

ing and Viterbi training were carried out, starting from the same saved stated of

the initial model. Figure 6.12 shows the increase in log likelihood during training.

Viterbi training is slightly faster and achieves a high relative convergence of log

likelihood after fewer iterations than EM training. However, one can see clearly

that the likelihood of the model built using Viterbi training is always lower than

for EM training. This was confirmed across several repetitions of this procedure,

for different random initialization of the model parameters.

A difference in likelihood need not have any effect on the quality of the predic-

tions made by the differently trained models. Each model was evaluated on the

unseen test data. Furthermore, two decoding strategies were compared. Viterbi

decoding refers to selecting the label of the most probable path of the composed

234

-30000

-29500

-29000

-28500

-28000

-27500

-27000

-26500

-26000

 2 4 6 8 10 12 14 16 18 20

lo
g

 l
ik

el
ih

o
o

d

number of training iterations

EM
Viterbi

Figure 6.12: Comparison of log likelihood during EM training and Viterbi train-
ing.

235

Training Decoding SymER StrER
Viterbi Viterbi 36.33% 95.6%

MAP 36.20% 95.6%
EM Viterbi 34.51% 92.4%

MAP 34.33% 92.5%

Figure 6.13: Comparison of errors made by the same transduction model for dif-
ferent training and decoding strategies.

transducer, as described in Section 5.5. What we call MAP decoding here is not an

exhaustive search, but refers to finding the most probable phoneme string among

all possible phoneme strings up to a fixed length.

Figure 6.13 shows the results of the evaluation. We can see that Viterbi training

results in higher symbol error rate (where symbol error is Levenshtein distance)

and string error rate than EM training. For each trained model, MAP decoding

is also better than Viterbi decoding, though the differences are not as big as the

differences arising from the two training methods. This means that proper EM

training should always be preferred over Viterbi training. Although it is slightly

slower, this should not matter much, since training happens off-line. Full MAP

decoding is also better than Viterbi decoding, but is much slower. For practical

applications, Viterbi decoding may therefore be a reasonable shortcut to take.

6.7 Classification vs. Transduction

The preceding section demonstrated that the combination of EM training and

MAP decoding for stochastic transducers results in higher quality of predicted

236

pronunciations compared with Viterbi approximations. In this section we there-

fore primarily use EM training and MAP decoding when working with stochastic

transducers, which we are about to compare with a somewhat more traditional

approach to letter-to-sound conversion. Among the classifier-based approaches,

Sproat’s [2001] Pmtools stands out in two respects: first, unlike NETtalk and its

close relatives, it does not use a fixed inventory of multi-phoneme symbols, in-

stead constructing such special representations as needed, based on the training

data; second, unlike all other classifier-based approaches, an iterative training pro-

cedure is employed, whereby an induced classifier is used to recompute the best

alignment of the training data. In all other respects the Pmtools algorithm is com-

parable to other classifier-based approaches, though it should arguably be pre-

ferred because of its distinguishing characteristics. We use it as a representative

of the classifier-based approaches and compare it with our transduction-based

approach.1

The training and evaluation data for the present comparison were obtained

in the following way. First, a subset of CMUdict was selected whose entries are

purely alphabetic, i.e., which excludes numbers and symbols. The resulting dic-

tionary contains 119,114 word forms. Second, the orthographic words in CMU-

dict were intersected with those found in the NETtalk data set, resulting in 15,402

unique orthographic words. Third, the alphabetic subset of CMUdict was joined

(using the Unix command join) with the list of words common to CMUdict and

the NETtalk dictionary, yielding a 16,697 word form subset of CMUdict. From this

dictionary a subset consisting of 10,000 randomly chosen entries was selected for

1Richard Sproat’s help with the present comparison is gratefully acknowledged, in particular
his role as the user-friendly interface to Pmtools.

237

SymER StrER
Pmtools 41.56% 92.04%
SFST Viterbi 35.39% 93.04%
SFST EM/MAP 34.01% 92.18%
Topline 8.46%

Figure 6.14: Comparison of approaches based on classification vs. transduction.

training, and a disjoint subset of 5,000 randomly chosen entries was set aside for

evaluation.

As in the previous section, all models used a two-letter window with one let-

ter of left context. The main comparison is between Pmtools and a stochastic finite

state transducer (SFST) employing EM training and MAP decoding. More specif-

ically, MAP decoding was approximated using the 2,000 most likely paths (see

Section 5.5). While both approaches made at least one mistake on the vast ma-

jority of words, their performance differs noticeably when measured in terms of

symbol error rate (Levenshtein distance). The stochastic transducer performed at

34% symbol error rate, which is of course comparable to the best result from the

previous section (see Figure 6.13). This could not be matched by Pmtools, which

had a much higher error rate of more than 40%. This even exceeds the symbol

error rate of 35.4% for a stochastic transducer for which the Viterbi approxima-

tions were used during training and decoding. These results are summarized in

Figure 6.14. The label SFST refers to the approaches based on stochastic finite

state transducers; the additional label Viterbi indicates that Viterbi approxima-

tions were used, as opposed to the preferred EM training and MAP decoding. The

238

line labeled topline shows the best hypothetical performance of a transduction-

based approach, which was determined by an oracle that can tell whether the

correct pronunciation of a word is present among the 2,000 most likely paths

used during decoding. If the correct pronunciation could magically be picked

out whenever it was present, the overall string error rate would fall below 10%.

Unlike in the classifier-based approaches discussed in Section 6.5, this is not an ab-

solute performance bound, since it crucially depends on the size of the hypothesis

graph.

The present comparison also provides further backing for our claim that em-

pirical comparisons of letter-to-sound converters should not be based on string

error rate alone. The string error rates of Pmtools and the stochastic transducer

are very close (corresponding to a raw difference of seven words), yet there is a

pronounced difference in symbol error rate. Especially when error rates are high,

as they are here, real differences can easily remain hidden if one only looks at

string error rate. In light of this the view held by Damper et al. [1999] that string

error rate should be preferred because it results in higher and therefore more con-

servative numbers is particularly disturbing.

6.8 Modeling Word Length

Working with joint transducers means working with bivariate models. This leads

to issues that may not have been addressed in the traditional univariate HMM

literature. The purpose of this section is to draw attention to these problems,

specifically the problem of modeling the length of words.

The model used in the preceding section was not properly equipped to deal

with differing lengths of letter strings and phoneme strings. It tends to predict

239

phoneme strings that are about as long or slightly shorter than their correspond-

ing phoneme strings, but it cannot handle the full range of variation in lengths.

We have been working with joint models for convenience, since parameter estima-

tion is relatively straightforward. But this means that we are modeling both the

distribution of the lengths of letter strings as well as the conditional distribution

(regression function) of the lengths of phoneme strings given a particular letter

string.

Dealing with univariate length distributions is relatively straightforward. For

the purpose this discussion we assume that we are developing a model for the

language {x}∗ that assigns probabilities to strings such as xx or xxxxx. Take the

orthographic words of the NETtalk data set for example, and ignore the identi-

ties of the letters, or replace all letters with x. In the simplest case a memoryless

univariate model – a one-state stochastic automaton – gives rise to a geometric

distribution. However, a geometric distribution cannot adequately model the ob-

served distribution of word length among the NETtalk data.

Consider Figure 6.15, which shows the empirical distribution of word length

in the NETtalk data set, and also the word counts under a fitted geometric model.

The geometric distribution is a one-parameter model with a specific fixed shape,

and it is obvious that no geometric distribution will even remotely resemble the

empirical distribution. The data clearly call for a richer model.

One model that fits the observed data reasonably well is the stochastic transdu-

cer shown in Figure 6.16. It has five free parameters. Observe first that it is a two-

component mixture with mixing parameter m. The top component has three free

parameters, p1 through p3, and assigns nonzero probabilities to strings of lengths

one through four. The bottom component is a kind of negative binomial distri-

bution with one free parameter p that assigns nonzero probabilities to strings of

240

 3157

 2494

 1807

 543

 37

 1 3 5 7 9 11 13 15 17 19

 106
 317
 569

 1078

 1689

 2331

 2640

 3093

fr
eq

u
en

cy
 (

n
u

m
b

er
 o

f
w

o
rd

s)

word length (number of letters)

observed
geometric

neg. binomial

Figure 6.15: Distribution of word length in the NETtalk data set.

241

 /m

 /1-m

p1
x/1

p2
x/1-p1

p3
x/1-p2

1
x/1-p3

x/p

x/1-p

x/p

x/1-p

x/p

x/1-p

x/p

1-p
x/1-p

x/p

Figure 6.16: A stochastic automaton giving rise to a negative binomial model of
string length.

length four or more [see also Durbin et al., 1998, sec. 3.4]. The predicted word

counts under a fitted model of this form are shown in Figure 6.15 and should be

contrasted with the predictions made by the memoryless geometric model.

Building a language model for the orthographic words of the NETtalk dictio-

nary on the basis of this model of word length is already somewhat challenging,

due to the presence of parameter tying in the length model and due to its inter-

action with the language model proper. This would be a good test case for Eis-

ner’s [2002] approach, which was specifically designed for dealing with complex

parameter tying. However, it is not clear how any of this carries over straight-

forward to the bivariate setting of joint stochastic transducer models, where one

not only has to account for the variation in length of orthographic and phonemic

strings, but also for their covariance. Building discrete bivariate models, prefer-

ably with relatively few parameters, of joint length distributions is an important

issue that needs to be addressed when one wants to work with pairs of strings of

unequal and highly variable lengths.

242

6.9 Conclusion

In this chapter we looked at a number of empirical issues that corroborate or shed

new light on some of the theoretical claims discussed in earlier chapters. There

had been a theoretically motivated concern (see page 42) that prediction error

may make spurious distinctions and might overestimate symbol error. It turned

out that on average the opposite situation holds in practice, namely prediction

error tends to underestimate symbol error. Cost-sensitive evaluations can be car-

ried out to determine prediction cost, which in practice provides an upper bound

on symbol error. In other words, symbol error is typically sandwiched between

prediction error and prediction cost, and if both are minimized then symbol er-

ror is indirectly minimized. This gives some new justification to the traditional

classifier-based approaches, which generally minimize prediction error.

Section 6.3 showed how string error can be minimized directly using guided

branch-and-bound search. While this is feasible and useful for small problem

instances, it quickly becomes intractable. A greedy local heuristic was used in

Section 6.4, but although it can deal with larger problems the reduction of empir-

ical error did not result in improvements during cross-validation and evaluation.

We concluded that trying to minimizing string error directly is not a worthwhile

goal. This is an important result because string error rate had, to our knowledge,

never been used directly as an optimization criterion. At most it was used indi-

rectly: for example, Bakiri and Dietterich [2001] compare several improvements

on the NETtalk classification design and generally prefer feature inventories and

decoding strategies that increase string accuracy, sometimes even over other de-

signs that only improve phoneme accuracy.

243

The practical difficulties associated with minimizing string accuracy are one

of the reasons string accuracy should not be used as an evaluation criterion or

optimization objective. Another reason was given at the end of Section 6.6: in

that section we compared a classifier-based approach to letter-to-sound conver-

sion with our own transducer model. The two approaches were virtually indistin-

guishable in terms of string error rate, while there was a large difference in terms

of symbol error rate. This confirms our suspicion that string error rate is a crude

metric that considers highly flawed approaches as equal even though there may

exist clear differences in the amounts of symbol-level errors.

Section 6.5 presented lower bounds on the prediction and string error rate of

classifier-based approaches trained on the NETtalk data set, or, equivalently, up-

per bounds on best-case accuracy. It turned out that the current state of the art in

classifier-based letter-to-sound conversion is nowhere near its best-case optimum.

We also established clearly what previous authors [for example Stanfill and Waltz,

1986] had noted, namely that the letter-to-sound conversion task is inherently dif-

ficult if the only information one can consult is local letter context, since a fair

number of pronunciations one encounters could not have been predicted on the

basis of known letter–phoneme associations. For the NETtalk data set we estimate

that the predicted pronunciations of at least 10% of previously unseen entries will

necessarily contain mistakes.

For the transduction-based approach to letter-to-sound conversion, we com-

pared the effect of Viterbi training vs. EM training and Viterbi decoding vs. MAP

decoding. Not surprisingly, Viterbi decoding is considerably faster than MAP de-

coding, and it is also slightly less accurate. A less obvious result is that Viterbi

training yields noticeably inferior models compared with EM training, without

being much faster. We therefore recommend EM training when working with

244

stochastic transduction models. If speed of decoding is an issue, Viterbi decoding

is a useful approximation. Moreover, speed can be traded off for increased accu-

racy by decoding based on the n most likely paths for n ≥ 1, where the case of

n = 1 is regular Viterbi decoding. Training speed is less of an issue, since train-

ing happens off-line. Viterbi training tends to converge earlier then EM training

and gets stuck without the likelihood increasing to the level reached during EM

training.

In Section 6.7 we compared our transduction-based approach with a sophis-

ticated classifier-based approach. This was a balanced comparison, because the

two learners had access to exactly the same training and evaluation data and had

been configured to use the exact same information sources. The approach devel-

oped in Chapter 5 had noticeably lower symbol error rate than the classifier-based

converter, even when we used the Viterbi approximations.

Finally, Section 6.8 pointed out modeling issues that are different and poten-

tially more complex for joint transduction models, which realize bivariate distri-

butions, than for univariate HMMs. In order for stochastic finite state transducers

to be useful for modeling real-world data, some support for parameter tying and

complex parameter interactions appears to be necessary.

245

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The focus of this thesis has been on foundational issues related to modeling ratio-

nal string-to-string transductions. This modeling task is important for language

and speech technology, but is also relevant for other areas, including bioinfor-

matics. A simplified problem that involves same-length transductions has been

studied at an abstract level in the machine learning literature, sometimes under

the label ‘machine learning for sequential data’ [Dietterich, 2002]. However, this

label is misleading, as sequential data comes in many varieties and is certainly not

always adequately modeled by deterministic rational same-length transductions.

This is true for many language and speech processing applications. The concrete

application that has been used throughout this thesis is the task of predicting

the pronunciation of an English word on the basis of its written representation.

We saw in Chapter 2 and Chapter 3 that the typical data for this task violate the

same-length assumption: the phoneme strings one wants to predict are most of-

ten shorter than the letter strings they correspond to. This seems to suggest that

the existing machine learning techniques reviewed by Dietterich [2002] are sim-

ply not applicable, since they assume same-length transductions. Many authors

have therefore tried to alter their data so that existing research on same-length

modeling, and especially on classification, would remain applicable. Chapter 3

argued that such approaches do not pay enough attention to their preprocessing

246

steps in which the primary training data are altered (“aligned”) and cannot make

any useful guarantees about optimality of the inferred hypotheses. On the other

hand, if the alignment step is taken seriously and integrated with the learning

task, one is faced with intractable problems for even the simplest learning tasks.

By contrast, Chapter 4 addressed the learning problem directly without reducing

it to classification, albeit under very simplistic assumptions. The stochastic trans-

duction model due to Ristad and Yianilos [1998] can model memoryless stochas-

tic transductions without the same-length assumption. Many of its simplifying

assumptions that render it memoryless can easily be dropped, and such general-

izations can be obtained naturally when the memoryless model is presented, as it

was, in terms of weighted finite state transducers. Generalizations of the memo-

ryless transduction model were presented in Chapter 5. A number of problems

in Chapter 3 through Chapter 5 had to be left open and should be addressed by

future research. Among them, the questions of whether decoding for memory-

less transducers is NP-hard and whether algorithms that currently involve deter-

minization could profitably be reformulated in terms of disambiguation are the

most practically relevant issues.

We avoided the question of how the transducer topology should be deter-

mined, assuming that it had been fixed in advanced. Inferring a suitable transdu-

cer topology from data could proceed along the lines of model selection or model

merging [Stolcke and Omohundro, 1993]. Certain classes of topologies may have

desirable properties that simplify some of the algorithms that operate on stochas-

tic transducers. A clear example of this are memoryless transducers, for which

the Forward algorithm is a specialized procedure that combines transducer com-

position and algebraic distance computations. However, the class of topologies

for which the classical Forward algorithm is applicable appears to be much richer.

247

For example, the familiar Forward trellis graph (see Figure 4.2) arises from many

other specialized topologies, in particular for transducers whose states are fully

determined by the labels of the paths that reach them. A detailed discussion of

this rather general special case will be the topic of forthcoming work.

The general transduction model developed in Chapter 5 is relevant for many

language and speech processing tasks that cannot be modeled naturally in terms

of deterministic same-length transductions or in terms of memoryless stochastic

transductions. A number of examples had been given in Chapter 1. Among them,

information extraction has received an increasing amount of attention recently

and is likely to grow in importance in the future. It is clear that information

extraction can benefit from, and sometimes virtually requires, the use of transduc-

tions. For example, when extracting telephone numbers from speech transcripts,

spoken numbers should be converted to digit strings, since the length of the digit

string is a much better indicator of whether a spoken number is a phone number

than the number of spoken words is [Jansche and Abney, 2002]. In this example,

the transduction was modeled using a small hand-crafted finite state transducer

without any algorithmic training on empirical data. While this may have been ad-

equate for a small and relatively clearly defined domain like telephone numbers

from the North American Numbering Plan, larger and/or more diverse domains

could certainly benefit from automatic training methods. The performance of an

information extraction component is usually measured in terms of its precision

and recall, or rather in terms of their harmonic mean, the so-called F-measure.

In general, training an information extraction component should therefore mean

optimizing its F-measure. The implications of this simple and straightforward

formulation of the learning task have not been discussed in the literature. In fact,

248

existing papers on information extraction often mention precision, recall, and F-

measure only in conjunction with the evaluation of information extraction compo-

nents, whereas the optimization criterion used during the training of these com-

ponents is usually not related to the evaluation measures in any direct way and

is often left implicit. As in the case of letter-to-sound rules, using the preferred

evaluation measures as the optimization objectives during training would very

likely render the learning task extremely difficult. In fact, it may be much harder

than learning letter-to-sound rules, since essentially two diverging global criteria

(precision and recall) are involved. In other words, while the basic modeling tech-

niques may be the same for information extraction and letter-to-sound conversion

– stochastic finite transductions seem adequate – it is the difference in optimiza-

tion criteria that renders the information extraction problem very different from,

and intuitively harder than, the letter-to-sound problem. A full characterization

of the information extraction learning problem would be a worthwhile topic for

future research.

While the task of letter-to-sound conversion served as a source of examples

throughout this thesis, specific aspects of this concrete task were discussed in

Chapter 2 and Chapter 6. Chapter 2 provided a systematic comparison of evalua-

tion metrics that had been proposed and used for the letter-to-sound task. We ar-

gued that the preferred evaluation metric should at the very least be fine-grained

and universally applicable. Tallying the number of correctly predicted words, as

Damper et al. [1999] do, is universally applicable, but must be dismissed because

it is a coarse measure and can easily distort perceived differences. It is subsumed

by string edit distance [Wagner and Fischer, 1974; Kruskal, 1983], which is a use-

ful general metric. However, ordinary string edit distance (Levenshtein distance)

has two drawbacks. First, because it is additive, combining it with probabilities in

249

minimum risk decoding (Section 5.5) is challenging [Mohri, 2002a]. Second, Lev-

enshtein distance uses uniform weights that do not correspond to perceived pho-

netic similarity. The development of a simple measure of phonetic similarity or

confusability is a very useful avenue for further research. Such a measure would

be beneficial for many other areas, such as phonetics and/or psycholinguistics re-

search or forensic linguistics, plus it could form the basis of lexical confusability

measures [Fosler-Lussier et al., 2002]. In order to be applicable, such a measure

must be able to quantify the difference between any two phon(em)es, which in-

cludes comparisons of vowels with stop consonants etc., which the traditional

phonetics literature usually ignores.

In order for reported results on letter-to-sound conversion to be comparable,

the field should establish a standardized set of evaluation data. For English alone

there appear to be at least a dozen different data sets in use, which include dif-

ferent amounts of annotation, different transcription conventions, different pho-

neme inventories, etc. Comparisons across different data sets seem utterly futile,

unless dictated by necessity [Damper et al., 1999]. In many other subfields, de

facto standards for training and evaluation do exist, for example, the use of cer-

tain sections of the Penn Treebank in part-of-speech annotation and parsing, or

the ongoing debate of evaluation in word sense disambiguation. Lamenting the

current state of the field in letter-to-sound conversion evaluation would be about

as useless as hastily declaring an existing data set to be the basis of a new standard.

However, at least for English a preliminary standard should be established, which

should satisfy the following criteria: it should be available at no cost and freely

distributable; it should be representative of the general vocabulary of a single di-

alect; the status of pronunciation variants must be clearly indicated; it must not in-

clude alignment information. None of the data sets discussed in Chapter 2 satisfy

250

these criteria: many data sets are proprietary and have restrictive licenses; some

data sets have odd vocabulary gaps, others include inconsistent pronunciations

that appear to originate from different dialects; some data sets (especially CMU-

dict) do not differentiate between dialectal variation (which one may choose to

ignore), variation due to sense and/or part-of-speech distinctions (which should

be modeled), and variation that is due to speaking rate (which should be kept con-

sistent). Alignment information along the lines of the NETtalk data set should be

excluded for pedagogical reasons: the undue influence of NETtalk introduced the

letter-to-sound conversion task to the machine learning community, which has ac-

cess to the NETtalk data set via the UCI Machine Learning Repository [Blake and

Merz, 1998]; because the focus has often been exclusively on NETtalk, its approach

in terms of aligned data has come to dominate the machine learning approaches

to the problem. If a future standard data set for training and evaluating letter-to-

sound converters explicitly excluded alignment information, the field as a whole

would be forced to think carefully about evaluation measures and we might even-

tually see the development of novel approaches no longer based on classification.

251

BIBLIOGRAPHY

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974. 172, 173

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and
Algorithms. Addison-Wesley Series in Computer Science and Information
Processing. Addison-Wesley, Reading, MA, 1983. 221

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Berlin, Germany, 1999. 56, 97

R. H. Baayen, R. Piepenbrock, and L. Gulikers. CELEX2. CD-ROM, catalog
number LDC96L14, Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, 1996. 19

R. H. Baayen, R. Piepenbrock, and H. van Rijn. The Celex lexical database.
CD-ROM, Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, 1993. 19

R. Harald Baayen. Word Frequency Distributions. Number 18 in Text, Speech and
Language Technology. Kluwer, Dordrecht, The Netherlands, 2001. 1, 35

L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer. A new algorithm for the
estimation of hidden Markov model parameters. In International Conference on
Acoustics, Speech, and Signal Processing, pages 493–496, 1988. 200

Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A maximum likelihood
approach to continuous speech recognition. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 5(2):179–190, March 1983. 200

Ghulum Bakiri and Thomas G. Dietterich. Performance comparison between
human engineered and machine learned letter-to-sound rules for English: A
machine learning success story. In 18th International Conference on the
Applications of Computers and Statistics to Science and Society, Cairo, Egypt, 1993.
37, 66, 228, 231

252

Ghulum Bakiri and Thomas G. Dietterich. Constructing high-accuracy
letter-to-phoneme rules with machine learning. In Damper [2001a], pages
27–44. 25, 27, 28, 37, 66, 73, 222, 226, 243

Cyril Banderier and Sylviane Schwer. Why Delannoy’s numbers? In 5th Lattice
Path Combinatorics and Discrete Distributions Conference, Athens, Greece, June
2002. 116

G. Edward Barton, Jr., Robert C. Berwick, and Eric Sven Ristad. Computational
Complexity and Natural Language. Computational Models of Cognition and
Perception. MIT Press, Cambridge, MA, 1987. 84

Jean Berstel and Christophe Reutenauer. Rational Series and their Languages.
Springer-Verlag, Berlin, Germany, 1988. 105

Alan W. Black, Kevin Lenzo, and Vincent Pagel. Issues in building general letter
to sound rules. In Proceedings of the 3rd ESCA Workshop on Speech Synthesis,
pages 77–80, 1998. 66

C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
Electronic document collection, Dept. of Information and Computer Sciences,
University of California, Irvine, CA, 1998.
http://www.ics.uci.edu/~mlearn/MLRepository.html. 36, 251, 264

Gosse Bouma. A finite-state and data-oriented method for grapheme to
phoneme conversion. In Proceedings of the First Conference of the North-American
Chapter of the Association for Computational Linguistics, pages 303–310, 2000. 66

Chris Brew. Letting the cat out of the bag: Generation for shake-and-bake MT. In
Proceedings of the 15th International Conference on Computational Linguistics,
pages 610–616, Nantes, France, August 1992. 84

John Bridle. Optimization and search in speech and language processing. In
Cole et al. [1997], chapter 11.7, pages 365–369. 133

Eric Brill, Radu Florian, John C. Henderson, and Lidia Mangu. Beyond n-grams:
Can linguistic sophistication improve language modeling? In Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics, pages 186–190, Montreal,
QC, 1998. 71, 231

Francisco Casacuberta and Colin de la Higuera. Computational complexity of
problems on probabilistic grammars and transducers. In Oliveira [2000],
pages 15–24. 84, 152, 158

253

http://www.ics.uci.edu/~mlearn/MLRepository.html

Ananlada Chotimongkol and Alan W. Black. Statistically trained orthographic to
sound models for Thai. In Proceedings of the Sixth International Conference on
Spoken Language Processing, Beijing, China, October 2000. 66, 108

Kenneth Church. Stress assignment in letter to sound rules for speech synthesis.
In Proceedings of the 23rd Annual Meeting of the Association for Computational
Linguistics, pages 246–253, Chicago, IL, July 1985. 27

Alexander Simon Clark. Unsupervised Language Acquisition: Theory and Practice.
PhD thesis, University of Sussex, Brighton, England, September 2001. 122,
128, 155, 160, 161, 170, 177, 178, 183

Ron Cole, Joseph Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie
Zaenen, Antonio Zampolli, and Victor Zue, editors. Survey of the State of the
Art in Human Language Technology. Cambridge University Press and Giardini,
Cambridge, England and Pisa, Italy, 1997. 253, 258, 263, 265

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1st edition, 1990. 116, 141, 144, 153,
154, 161, 171, 172, 173, 174

Walter Daelemans, Antal van den Bosch, and Jakub Zavrel. Forgetting
exceptions is harmful in language learning. Machine Learning, 34(1):11–41,
1999. 65, 66

Walter M. P. Daelemans and Antal P. J. van den Bosch. Language-independent
data-oriented grapheme-to-phoneme conversion. In Jan P. H. van Santen,
Richard W. Sproat, Joseph P. Olive, and Julia Hirschberg, editors, Progress in
Speech Synthesis, pages 77–89. Springer, New York, NY, 1997. 65, 66, 75, 77, 214

R. I. Damper, editor. Data-Driven Techniques in Speech Synthesis. Number 9 in
Telecommunications Technology and Applications. Kluwer, Boston, MA,
2001a. 253, 254

R. I. Damper, Y. Marchand, M. J. Adamson, and K. Gustafson. Evaluating the
pronunciation component of text-to-speech systems for English: A
performance comparison of different approaches. Computer Speech and
Language, 13(2):155–176, April 1999. 18, 21, 33, 36, 54, 55, 57, 239, 249, 250

Robert I. Damper. Learning about speech from data: Beyond NETtalk. In
Damper [2001a], pages 1–25. 233

C. de la Higuera and F. Casacuberta. Topology of strings: Median string is
NP-complete. Theoretical Computer Science, 230(1–2):39–48, January 2000. 84,
202

254

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Jornal of the Royal Statistical Society,
Series B (Methodological), 39(1):1–38, 1977. 10, 127

Markus Dickinson and W. Detmar Meurers. Detecting errors in part-of-speech
annotation. In Proceedings of the 10th Conference of the European Chapter of the
Association for Computational Linguistics, pages 107–114, Budapest, Hungary,
2003. 30

Thomas G. Dietterich. Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10(7):1895–1924, 1998.
220

Thomas G. Dietterich. Machine learning for sequential data: A review. In Terry
Caelli, Adnan Amin, Robert P. W. Duin, Mohamed S. Kamel, and Dick
de Ridder, editors, Structural, Syntactic, and Statistical Pattern Recognition: Joint
IAPR International Workshops SSPR 2002 and SPR 2002, number 2396 in Lecure
Notes in Computer Science. Springer, Berlin, Germany, 2002. 36, 246

Thomas G. Dietterich, Hermann Hild, and Ghulum Bakiri. A comparison of ID3
and backpropagation for English text-to-speech mapping. Machine Learning,
18(1):51–80, 1995. 65, 66

Michael Divay and Anthony J. Vitale. Algorithms for grapheme-phoneme
translation for english and french: Applications for database searches and
speech synthesis. Computational Linguistics, 23(4):495–523, 1997. 16

Pedro Domingos. Metacost: A general method for making classifiers
cost-sensitive. In Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, pages 155–164, San Diego, CA, August 1999. 215

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, Cambridge, England, 1998. 115, 117, 128, 160, 162, 163, 170,
177, 242

Thierry Dutoit. An Introduction to Text-to-Speech Synthesis. Number 3 in Text,
Speech and Language Technology. Kluwer, Dordrecht, The Netherlands, 1997.
5

Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic
Press, New York, NY, 1974. 60, 72, 79, 192

Jason Eisner. Expectation semirings: Flexible EM for finite-state transducers. In
Gertjan van Noord, editor, Proceedings of the ESSLLI Workshop on Finite-State

255

Methods in NLP, Helsinki, Finland, August 2001. 136, 160, 161, 168, 184, 186,
188, 209

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In
Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 1–8, Philadelphia, PA, July 2002. 160, 161, 163, 183, 184, 185,
188, 189, 190, 242

Gunnar Evermann. Minimum word error rate decoding. MPhil thesis,
University of Cambridge, Churchill College, Cambridge, England, August
1999. 200, 202

Eugene Fink. A survey of sequential and systolic algorithms for the algebraic
path problem. Technical Report CS-92-37, Dept. of Computer Science,
University of Waterloo, Waterloo, ON, 1992. 141, 154

William M. Fisher. A statistical text-to-phone function using ngrams and rules.
In International Conference on Acoustics, Speech, and Signal Processing, pages
649–652, Phoenix, AZ, May 1999. 39, 65, 226

John G. Fletcher. A more general algorithm for computing closed semiring costs
between vertices of a directed graph. Communications of the ACM, 23(6):
350–351, June 1980. 162, 172, 173

Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):
345, June 1962. 172, 173

Ariadna Font Llitjós. Improving pronunciation accuracy of proper names with
language origin classes. Master’s thesis, Carnegie Mellon University,
Pittsburgh, PA, August 2001. 6

Eric Fosler-Lussier, Ingunn Amdal, and Hong-Kwang Jeff Kuo. On the road to
improved lexical confusability metrics. In Proceedings of the ISCA Tutorial and
Research Workshop on Pronunciation Modeling and Lexicon Adaptation, Estes Park,
CO, September 2002. 250

Lucian Galescu and James F. Allen. Bi-directional conversion between
graphemes and phonemes using a joint n-gram model. In Proceedings of the
Fourth ISCA Tutorial and Research Workshop on Speech Synthesis, Blair Atholl,
Scotland, August 2001. 8, 55

G. Gander, E. Krane, G. Pillock, and I. Sacks. Generalized Node Vortex Grammar.
Fons Niger, Oxford, England, 1985. 256

Pedro Garcı́a and Enrique Vidal. Inference of k-testable languages in the strict
sense and application to syntactic pattern recognition. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 12(9):920–925, September 1990. 70, 71

256

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979. 88, 90,
97

Dafydd Gibbon. Finite state processing of tone systems. In Proceedings of the
Third Conference of the European Chapter of the Association for Computational
Linguistics, pages 291–297, Copenhagen, Denmark, 1987. 71

Dafydd Gibbon. Finite state prosodic analysis of African corpus resources. In
Proceedings of the 7th European Conference on Speech Communication and
Technology (Eurospeech 2001), pages 83–86, Aalborg, Denmark, September 2001.
71

Dafydd Gibbon, Roger Moore, and Richard Winski, editors. Handbook of
Standards and Resources for Spoken Language Systems. Mouton de Gruyter,
Berlin, Germany, 1997. 16, 18, 19

Dan Gildea and Dan Jurafsky. Automatic induction of finite state transducers for
simple phonological rules. Technical Report TR-94-052, International
Computer Science Institute, Berkeley, CA, October 1994. Also presented at
ACL 33 (1995). 61, 64

Daniel Gildea and Daniel Jurafsky. Learning bias and phonological-rule
induction. Computational Linguistics, 22(4):497–530, 1996. 61, 64

Michel Gilloux. Automatic learning of word transducers from examples. In
Proceedings of the Fifth Conference of the European Chapter of the Association for
Computational Linguistics, pages 107–112, Berlin, Germany, 1991. 128, 160

Kazimierz Głazek. A Guide to the Literature on Semirings and their Applications in
Mathematics and Information Sciences. Kluwer, Dordrecht, The Netherlands,
2002. 119

Jonathan S. Golan. The Theory of Semirings with Applications in Mathematics and
Theoretical Computer Science. Number 54 in Pitman Monographs and Surveys
in Pure and Applied Mathematics. Longman and Wiley, Harlow, England and
New York, NY, 1992. 119, 186, 195

Jonathan S. Golan. Semirings and their Applications. Kluwer, Dordrecht, The
Netherlands, 1999. 119

E. Mark Gold. Language identification in the limit. Information and Control, 10(5):
447–474, 1967. 60, 85

Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605,
December 1999. 119, 120, 152, 161, 162

257

Joshua T. Goodman. Parsing Inside-Out. PhD thesis, Harvard University,
Cambridge, MA, May 1998. 119, 152, 158

H. J. Hamilton and J. Zhang. Learning pronunciation rules for English
graphemes using the version space algorithm. In Proceedings of the Seventh
Florida Artificial Intelligence Research Symposium (FLAIRS-94), pages 76–80,
Pensacola, FL, May 1994. 66

Lynette Hirschman and Henry S. Thompson. Overview of evaluation in speech
and natural language processing. In Cole et al. [1997], chapter 13.1. 16

J. Hochberg, S. M. Mniszewski, T. Calleja, and G. J. Papcun. A default hierarchy
for pronouncing English. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 13(9):957–964, September 1991. 9, 65

Juraj Hromkovič. Algorithmics for Hard Problems: Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics. Springer, Berlin,
Germany, 1st edition, 2001. 56, 221

C. B. Huang, M. A. Son-Bell, and D. M. Baggett. Generation of pronunciation
from orthographies using transformation-based error-driven learning. In
Proceedings of the Third International Conference on Spoken Language Processing,
pages 411–414, Yokohama, Japan, September 1994. 9, 66

Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees
is NP-complete. Information Processing Letters, 5(1):15–17, May 1976. 76, 84

International Phonetic Association. Handbook of the International Phonetic
Association: A Guide to the Use of the International Phonetic Alphabet. Cambridge
University Press, Cambridge, England, 1999. 5, 21, 25

Martin Jansche. A two-level take on Tianjin tone. In Proceedings of the Third
ESSLLI Student Session, pages 162–174, Saarbrücken, Germany, August 1998.
62, 71

Martin Jansche. Re-engineering letter-to-sound rules. In Proceedings of the Second
Meeting of the North American Chapter of the Association for Computational
Linguistics, pages 111–117, Pittsburgh, PA, 2001. 29, 66

Martin Jansche. Learning local transductions is hard. In Proceedings of
Mathematics of Language 8, pages 81–92, Bloomington, IN, June 2003. 60

Martin Jansche and Steven P. Abney. Information extraction from voicemail
transcripts. In Proceedings of the 2002 Conference on Empirical Methods in Natural
Language Processing, pages 320–327, Philadelphia, PA, July 2002. 3, 248

258

Frederick Jelinek. Statistical Methods for Speech Recognition. Language, Speech
and Communication. MIT Press, Cambridge, MA, 1997. 116, 117, 128, 151, 154

Li Jiang, Hsiao-Wuen Hon, and Xuedong Huang. Improvements on a trainable
letter-to-sound converter. In Proceedings of the 5th European Conference on Speech
Communication and Technology (Eurospeech ’97), pages 605–608, Rhodes, Greece,
September 1997. 65, 108

Daniel Jurafsky, James H. Martin, Andrew Kehler, Keith Vander Linden, and
Nigel Ward. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice
Hall Series in Artificial Intelligence. Prentice Hall, Upper Saddle River, NJ,
2000. 122

Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient
agnostic learning. In Proceedings of the 5th Annual Workshop on Computational
Learning Theory, pages 341–352, Philadelphia, PA, 1992. 103

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA, 1994. Second printing, 1997. 83

Sanjeev Khanna, Madhu Sudan, and Luca Trevisan. Constraint satisfaction: The
approximability of minimization problems. In Proceedings of the 12th Annual
IEEE Conference on Computational Complexity, pages 282–296, Ulm, Germany,
June 1997a. 101, 102

Sanjeev Khanna, Madhu Sudan, and David P. Williamson. A complete
classification of the approximability of maximization problems derived from
Boolean constraint satisfaction. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 11–20, El Paso, TX, 1997b. 97

Sam M. Kim and Robert McNaughton. Computing the order of a locally testable
automaton. SIAM Journal on Computing, 23(6):1193–1215, 1994. 74

Paul Kingsbury, Stephanie Strassel, Cynthia McLemore, and Robert MacIntyre.
CALLHOME American English lexicon (PRONLEX). CD-ROM, catalog
number LDC97L20, Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, 1997. 19

Dennis H. Klatt. Review of text to speech conversion for English. Journal of the
Acoustical Society of America, 82(3):737–793, 1987. xii, 5, 6, 7

Philip N. Klein, Serge A. Plotkin, Satish Rao, and Éva Tardos. Approximation
algorithms for Steiner and directed multicuts. Journal of Algorithms, 22(2):
205–220, 1997. 101

259

Kevin Knight. Decoding complexity in word-replacement translation models.
Computational Linguistics, 25(4):607–615, December 1999. 84

Reinhard B. Köhler and Burghard B. Rieger, editors. Contributions to Quantitative
Linguistics: Proceedings of the First International Conference on Quantitative
Linguistics, QUALICO, Trier, 1991. Kluwer, Dordrecht, The Netherlands, 1993.
263

András Kornai. Natural language and the Chomsky hierarchy. In Proceedings of
the Second Conference of the European Chapter of the Association for Computational
Linguistics, pages 1–7, Geneva, Switzerland, 1985. 71

András Kornai. Zipf’s law outside the middle range. In Proceedings of the Sixth
Meeting on Mathematics of Language, pages 347–356, Orlando, FL, 1999. 1

András Kornai. How many words are there? Glottometrics, 4:61–86, 2002. 1

Joseph B. Kruskal. An overview of sequence comparison. In Sankoff and
Kruskal [1983], pages 1–44. Reissued by CSLI Publications, Stanford, CA, 1999.
38, 117, 121, 249

Werner Kuich. Semirings and formal power series: Their relevance to formal
languages and automata. In Rozenberg and Salomaa [1997], pages 609–677.
119, 162

Éric Laporte. Rational transductions for phonetic conversion and phonology. In
Roche and Schabes [1997a], pages 407–430. 71

J. M. Lucassen and R. L. Mercer. An information theoretic approach to the
automatic determination of phonemic baseforms. In International Conference on
Acoustics, Speech, and Signal Processing, pages 42.5.1–42.5.4, 1984. 9, 37, 65, 71,
75

R. W. P. Luk and R. I. Damper. Stochastic phonographic transduction for English.
Computer Speech and Language, 10(2):133–153, April 1996. 39

Robert W. P. Luk and Robert I. Damper. Computational complexity for a fast
Viterbi decoding algorithm for stochastic letter-phoneme transduction. IEEE
Transactions on Speech and Audio Processing, 6(3):217–225, May 1998. 151

Lidia Mangu, Eric Brill, and Andreas Stolcke. Finding consensus in speech
recognition: Word error minimization and other applications of confusion
networks. Computer Speech and Language, 14(4):373–400, October 2000. 202

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, 1999. 116

260

Yannick Marchand and Robert I. Damper. A multistrategy approach to
improving pronunciation by analogy. Computational Linguistics, 26(2):195–219,
2000. 233

Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions. Wiley Series in Probability and Statistics. Wiley, New York, NY,
1997. 127

Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press,
Cambridge, MA, 1972. 68, 69, 70

Thomas P. Minka. Empirical risk minimization is an incomplete inductive
principle. http://www.stat.cmu.edu/~minka/papers/erm.html, August 2000.
85

Wolfgang Minker. Grapheme-to-phoneme conversion: An approach based on
hidden Markov models. Notes et Documents LIMSI 96-04, Laboratoire
d’Informatique pour le Mécanique et les Sciences de l’Ingénieur
(LIMISI-CNRS), Orsay Cedex, France, January 1996. 10, 45, 66, 78, 111

Roger Mitton. A description of a computer-usable dictionary file based on the
Oxford Advanced Learner’s Dictionary. Electronic document, Oxford Text
Archive, number 0710-2, June 1992. 19

Mehryar Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997. 119, 120, 121, 152, 159, 164, 192,
199, 209

Mehryar Mohri. General algebraic frameworks and algorithms for
shortest-distance problems. Technical Memorandum 981210-10TM, AT&T
Labs, Florham Park, NJ, June 1998. 62 pages. 171, 194

Mehryar Mohri. Generic epsilon-removal algorithm for weighted automata. In
Andrei Păun and Sheng Yu, editors, Implementation and Application of Automata:
5th International Conference, CIAA 2000, London, Ontario, Canada, July 24–25,
2000: Revised Papers, number 2088 in Lecure Notes in Computer Science, pages
230–242. Springer, Berlin, Germany, 2001. 192, 193, 195, 197

Mehryar Mohri. Edit-distance of weighted automata. In Jean-Marc
Champarnaud and Denis Maurel, editors, 7th International Conference CIAA
2000, Tours, France. Springer, 2002a. 114, 121, 203, 250

Mehryar Mohri. Generic ε-removal and input ε-normalization algorithms for
weighted transducers. International Journal of Foundations of Computer Science,
13(1):129–143, 2002b. 192, 197, 209

261

http://www.stat.cmu.edu/~minka/papers/erm.html

Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002c.
154, 171, 194, 208

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted automata in text
and speech processing. In Proceedings of the ECAI’96 Workshop on Extended
Finite State Models of Language, pages 46–50, Budapest, Hungary, August 1996.
146, 159, 160, 161, 164, 166

Mehryar Mohri, Fernando Pereira, and Michael Riley. The design principles of a
weighted finite-state transducer library. Theoretical Computer Science, 231(1):
17–32, January 2000. 66, 119, 166, 178

Mehryar Mohri and Michael Riley. A weight pushing algorithm for large
vocabulary speech recognition. In Proceedings of the 7th European Conference on
Speech Communication and Technology (Eurospeech 2001), pages 1603–1606,
Aalborg, Denmark, September 2001. 183

Mehryar Mohri and Michael Riley. An efficient algorithm for the n-best-strings
problem. In Proceedings of the Seventh International Conference on Spoken
Language Processing, Denver, CO, September 2002. 152, 202

Edward F. Moore, editor. Sequential Machines: Selected Papers. Addison-Wesley,
Reading, MA, 1964. 263

H. C. Nusbaum, D. B. Pisoni, and C. K. Davis. Sizing up the Hoosier mental
lexicon: Measuring the familiarity of 20,000 words. Research on Speech
Perception Progress Report 10, Indiana University, Bloomington, IN, 1984. 20

Arlindo L. Oliveira, editor. Grammatical Inference: Algorithms and Applications, 5th
International Colloquium, ICGI 2000, Lisbon, Portugal, September 2000, Proceedings,
number 1891 in Lecure Notes in Artificial Intelligence, Berlin, Germany, 2000.
Springer. 253

José Oncina, Pedro Garcı́a, and Enrique Vidal. Learning subsequential
transducers for pattern recognition interpretation tasks. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 15(5):448–458, May 1993. 60

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
MA, 1994. 96, 97

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, Mineola, NY, 1998. Originally
published by Prentice Hall, Englewood Cliffs, NJ, 1982. 87, 221

262

S. H. Parfitt and R. A. Sharman. A bi-directional model of English pronunciation.
In Proceedings of the 2nd European Conference on Speech Communication and
Technology (Eurospeech ’91), pages 801–804, Genova, Italy, September 1991. 128,
160

Fernando C. N. Pereira and Michael Riley. Speech recognition by composition of
weighted finite automata. In Roche and Schabes [1997a]. 119, 146, 159, 164,
166

Louis C. W. Pols. Speech synthesis evaluation. In Cole et al. [1997], chapter 13.7,
pages 429–430. 16, 18

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, Cambridge, England, 2nd edition, 1992. 141

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
66, 222

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993. 214

Michael O. Rabin. Probabilistic automata. In Moore [1964], pages 98–114. 161

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
February 1989. 111, 115, 151, 159

Mazin Rahim and Chin-Hui Lee. String-based minimum verification error
(SB-MVE) training for speech recognition. Computer Speech and Language, 11(2):
147–160, April 1997. 200

P. Rentzepopoulos and G. Kokkinakis. Phoneme to grapheme conversion using
HMM. In Proceedings of the 2nd European Conference on Speech Communication
and Technology (Eurospeech ’91), Genova, Italy, September 1991. 8

P. A. Rentzepopoulos, A. E. Tsopanoglou, and G. K. Kokkinakis. A statistical
approach for phoneme-to-grapheme conversion. In Köhler and Rieger [1993],
pages 319–328. 10, 66, 77, 111

Panagiotis A. Rentzepopoulos and George K. Kokkinakis. Efficient multi-lingual
phoneme-to-grapheme conversion based on HMM. Computational Linguistics,
22(3):351–376, 1996. 66, 111

Michael D. Riley. A statistical model for generating pronunciation networks. In
International Conference on Acoustics, Speech, and Signal Processing, volume 2,
pages 737–740, 1991. 29, 65

263

Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance. Technical
Report CS-TR-532-96, Dept. of Computer Science, Princeton University,
Princeton, NJ, October 1996. 105, 113

Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 20(5):522–532, May
1998. 10, 105, 111, 113, 117, 122, 123, 124, 128, 132, 135, 136, 137, 151, 157, 158,
160, 178, 188, 203, 204, 208, 209, 247

Emmanuel Roche and Yves Schabes, editors. Finite-State Language Processing.
Language, Speech and Communication. MIT Press, Cambridge, MA, 1997a.
260, 263, 264

Emmanuel Roche and Yves Schabes. Introduction. In Finite-State Language
Processing Roche and Schabes [1997a], pages 1–66. 62, 192

Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
volume 1. Springer, Berlin, Germany, 1997. 260

Robert C. Russell. Improvements in indexes. US Patent 1,261,167, April 1918. 4

Arto Salomaa. Jewels of Formal Language Theory. Computer Science Press,
Rockville, MD, 1981. 72

David Sankoff and Joseph Kruskal, editors. Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparison.
Addison-Wesley, Reading, MA, 1983. Reissued by CSLI Publications, Stanford,
CA, 1999. 260

Lawrence K. Saul and Mazin G. Rahim. Maximum likelihood and minimum
classification error factor analysis for automatic speech recognition. IEEE
Transactions on Speech and Audio Processing, 8(2):115–125, March 2000. 200

Terrence J. Sejnowski. The NetTalk corpus: Phonetic transcription of 20,008
English words. Electronic document, Cognitive Science Center, Johns Hopkins
University, Baltimore, MD, 1988. Available as part of Blake and Merz [1998].
20, 24, 25, 29, 36, 42, 73, 78, 104, 217

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to
pronounce English text. Complex Systems, 1(1):145–168, 1987. 9, 36, 37, 54, 65,
73, 226

C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423 and 623–656, July and October 1948. 109

264

Chilin Shih and Richard Sproat. Issues in text-to-speech conversion for
Mandarin. Computational Linguistics and Chinese Language Processing, 1(1):
37–86, August 1996. 6

N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. 1996–2003.
http://www.research.att.com/~njas/sequences/. 116, 123

Richard Sproat. Text interpretation for TtS synthesis. In Cole et al. [1997],
chapter 5.3, pages 175–182. 5

Richard Sproat, editor. Multilingual Text-to-Speech Synthesis: The Bell Labs
Approach. Kluwer, Dordrecht, The Netherlands, 1998. 265

Richard Sproat. A Computational Theory of Writing Systems. Cambridge
University Press, Cambridge, England, 2000. 2, 3, 45

Richard Sproat, Alan W. Black, Stanley Chen, Shankar Kumar, Mari Ostendorf,
and Christopher Richards. Normalization of non-standard words. Computer
Speech and Language, 15(3):287–333, July 2001. 23

Richard Sproat, Bernd Möbius, Kazuaki Maeda, and Evelyne Tzoukermann.
Multilingual text analysis. In Sproat [1998], chapter 3, pages 31–87. 5

Richard Sproat and Michael Riley. Compilation of weighted finite-state
transducers from decision trees. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, pages 215–222, Santa Cruz, CA, June
1996. 66

Richared Sproat. Pmtools: A pronunciation modeling toolkit. In Proceedings of the
Fourth ISCA Tutorial and Research Workshop on Speech Synthesis, Blair Atholl,
Scotland, August 2001. 66, 75, 77, 78, 104, 237

Craig Stanfill and David Waltz. Toward memory-based reasoning.
Communications of the ACM, 29(12):1213–1228, December 1986. 9, 25, 37, 65, 73,
244

Craig W. Stanfill. Memory-based reasoning applied to English pronunciation. In
Proceedings of the Sixth National Conference on Artificial Intelligence, pages
577–581, Seattle, WA, July 1987. 37, 65

Andreas Stolcke, Yochai König, and Mitchel Weintraub. Explicit word error
minimization in n-best list rescoring. In Proceedings of the 5th European
Conference on Speech Communication and Technology (Eurospeech ’97), Rhodes,
Greece, September 1997. 202

265

http://www.research.att.com/~njas/sequences/

Andreas Stolcke and Stephen Omohundro. Hidden Markov model induction by
Bayesian model merging. In Stephen José Hanson, Jack D. Cowan, and C. Lee
Giles, editors, Advances in Neural Information Processing Systems, volume 5,
pages 11–18, San Mateo, CA, 1993. Morgan Kaufmann. 111, 247

I. Torres and A. Varona. k-TSS language models in speech recognition systems.
Computer Speech and Language, 15(2):127–149, April 2001. 71

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):
1134–1142, November 1984. 83

Antal van den Bosch and Walter Daelemans. Data-oriented methods for
grapheme-to-phoneme conversion. In Proceedings of the Sixth Conference of
European Chapter of the Association for Computational Linguistics, pages 45–53,
Utrecht, The Netherlands, 1993. 37, 226

Antal P. J. van den Bosch. Learning to Pronounce Written Words: A Study in
Inductive Language Learning. PhD thesis, Universiteit Maastricht, Maastricht,
The Netherlands, December 1997. 6, 8, 28

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21(1):168–173, January 1974. 38, 76, 96, 117, 123, 157, 249

Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):
11–12, January 1962. 172, 173

Robert L. Weide. The Carnegie Mellon pronouncing dictionary version 0.6.
Electronic document, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, August 1998.
ftp://ftp.cs.cmu.edu/project/fgdata/dict/. 19, 21

S. Winograd. Input-error-limiting automata. Journal of the ACM, 11(3):338–351,
March 1964. 72

Takashi Yokomori and Satoshi Kobayashi. Learning local languages and their
application to DNA sequence analysis. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 20(10):1067–1079, October 1998. 70

F. Yvon, P. Boula de Mareüil, C. d’Allesandro, V. Aubergé, M. Bagein, G. Bailly,
F. Béchet, S. Foukia, J.-F. Goldman, E. Keller, D. O’Shaughnessy, V. Pagel,
F. Sannier, J. Véronis, and B. Zellner. Objective evaluation of grapheme to
phoneme conversion for text-to-speech synthesis in French. Computer Speech
and Language, 12(4):393–410, October 1998. 18, 34

Yechezkel Zalcstein. Locally testable languages. Journal of Computer and System
Sciences, 6(2):151–167, 1972. 70

266

ftp://ftp.cs.cmu.edu/project/fgdata/dict/

INDEX

accuracy, 55, see error rate
algorithm

algebraic path
all-pairs, 173
single-source, 144

Backward, 124–126
conditionalization, 148
EM, 10, 127–130, 136
ε-removal, 195
expectation step, 135, 183
FMC certificate, 90
Forward, 117–124
marginalization, 146
OSTIA, 60–65

alignment, 114
alphabetic substitution, 37, 72, 79

closure
matrix, 141, 144
semiring, 143

CMUdict, 19, 21

decoding, 109
MAP, 110, 151–156, 198–199, 233–
236
minimum risk, 200–206
Viterbi, 152, 199, 233–236

Delannoy numbers, 116–117, 123
distance

edit, 38, 105, 117
Hamming, 37
Levenshtein, 38, 47, 88, 117, 121,
201
stochastic edit, 203

error
prediction, 36, 37, 41, 50, 211–
216
string, 33, 50, 54, 200
symbol, 38, 41, 54, 200

error rate
phon(em)e, 39
prediction, 37
string, 36
symbol, 38

graph
acyclic, 140
almost-acyclic, 140
DAWG, 141
of a function, 62, 69
of a relation, 69

HMM, 111, 117, 152, 156

IPA, 5, 21, 25

L-reduction, 97, 101
loss, 18, 31, 32, 85, 201, see error

monoid, 78–79, 119
morphism

fine, 79, 89, 114
monoid, 79, 105, 113
semigroup, 79
very fine, 79, 82, 89, 97, 98

n-phone model, 108, 137
NETtalk, 24, 36

objective function, 32, 55, 76

267

rescoring, 108
risk, 32, 164, 200

empirical, 32, 85, 87, 102

semigroup, 78
free, 78

semimodule, 136, 186–187
semiring, 119

Boolean, 161
closed, 144, 153
closed nonnegative real, 162
log, 163
nonnegative real, 120, 144
tropical, 121, 153, 155, 163

transducer, 164
subsequential, 59

transduction
local, 60
memoryless, 105
stochastic, 110
subsequential, 60

zip, 69, 110

268

	Title Page
	Copyright
	Abstract
	Acknowledgments
	Vita
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Letter-to-Sound Conversion
	1.3 Overview of the Thesis

	2 Evaluation Metrics and Data
	2.1 Introduction
	2.2 Data Sets
	2.2.1 The CMU Pronouncing Dictionary
	2.2.2 The NETtalk Data Set

	2.3 Evaluation Metrics
	2.3.1 String Error
	2.3.2 Prediction Error
	2.3.3 Symbol Error

	2.4 Interconnections
	2.4.1 Prediction Error vs. Symbol Error
	2.4.2 Prediction Error vs. String Error
	2.4.3 Symbol Error vs. String Error

	2.5 Accuracy, Optimization and Approximations
	2.6 Conclusion

	3 Learning Deterministic Transducers
	3.1 Introduction
	3.2 Subsequential Transducers
	3.3 Strictly Local Transducers
	3.3.1 Locality Assumption
	3.3.2 Aligned Data Requirement

	3.4 Morphisms of Free Monoids
	3.5 Learning Tasks and their Complexity
	3.5.1 Exact Solutions
	3.5.2 Approximate Solutions

	3.6 Conclusion

	4 Learning Memoryless Stochastic Transducers
	4.1 Introduction
	4.1.1 Stochastic Transducers
	4.1.2 The ``Noisy Channel'' Metaphor
	4.1.3 Memoryless Stochastic Transducers

	4.2 Evaluating the Mass Function of a Joint Model
	4.2.1 The Generic Forward Algorithm
	4.2.2 The Generic Backward Algorithm

	4.3 Estimating the Parameters of a Joint Model
	4.3.1 Derivation of EM Updates
	4.3.2 Calculating Expected Counts

	4.4 Obtaining Conditional Models
	4.4.1 Evaluating the Mass Function of a Conditional Model
	4.4.2 Marginal Automata
	4.4.3 Conditional Stochastic Transducers

	4.5 Using a Joint Model for Prediction
	4.6 Conclusion

	5 Learning General Stochastic Transducers
	5.1 Introduction
	5.2 Evaluating the Mass Function of a Joint Model
	5.2.1 Reconstruction of the Forward Algorithm
	5.2.2 Computing Forward and Backward Probabilities

	5.3 Estimating the Parameters of a Joint Model
	5.3.1 Calculating Expected Counts
	5.3.2 On So-Called Expectation Semirings

	5.4 Obtaining Conditional Models
	5.4.1 Marginal Automata
	5.4.2 Conditional Stochastic Transducers
	5.4.3 Epsilon-Removal in the Real Semiring

	5.5 Using a Joint Model for Prediction
	5.5.1 MAP Decoding
	5.5.2 Minimum Risk Decoding

	5.6 Conclusion

	6 Experiments
	6.1 Introduction
	6.2 Is Prediction Error Overly Fussy?
	6.3 Brute-Force Word Error Minimization
	6.4 Local Search
	6.5 Bounds on the Performance of Classifier-Based Approaches
	6.6 Effects of Viterbi Training and Decoding
	6.7 Classification vs. Transduction
	6.8 Modeling Word Length
	6.9 Conclusion

	7 Conclusions and Future Work
	Bibliography
	Index

