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Abstract

It is well known that occurrence counts

of words in documents are often mod-
eled poorly by standard distributions like

the binomial or Poisson. Observed counts
vary more than simple models predict,
prompting the use of overdispersed mod-
els like Gamma-Poisson or Beta-binomial
mixtures as robust alternatives. Another
deficiency of standard models is due to the
fact that most words never occur in a given
document, resulting in large amounts of
zero counts. We propose using zero-
inflated models for dealing with this, and

evaluate competing models on a Naive
Bayes text classification task. Simple
zero-inflated models can account for prac-
tically relevant variation, and can be easier
to work with than overdispersed models.

Introduction

set of parameters controls all properties of the dis-
tribution it is important to have enough parameters
to model the relevant aspects of one’s data. Sim-
ple models like the Poisson or binomial do not have
enough parameters for many realistic applications,
and we suspect that the same might be true of log-
linear models. When applying robust models like
the negative binomial to linguistic count data like
word occurrences in documents, it is natural to ask
to what extent the extra-Poisson variation has been
captured by the model. Answering that question is
our main goal, and we begin by reviewing some of
the classic results dflosteller and Wallac€1984).

2 Word Frequency in Fixed-Length Texts

In preparation of their authorship study Diie Fed-
eralist, Mosteller and Wallac€1984 §2.3) investi-
gated the variation of word frequency across con-
tiguous passages of similar length, drawn from pa-
pers of known authorship. The occurrence frequen-
cies of any in papers by Hamiltondp. cit, Ta-
ble 2.3-3) are repeated herefigure = out of a

Linguistic count data often violate the simplistic asfotal of 247 passages there are 125 in which the
sumptions of standard probability models like thévord anydoes not occur; it occurs once in 88 pas-
binomial or Poisson distribution. In particular, theSages, twice in 26 passages, étigure lalso shows
inadequacy of the Poisson distribution for modelthe counts predicted by a Poisson distribution with
ing word (token) frequency is well known, and ro-mean 067. Visual inspection (“chi by eye”) indi-
bust alternatives have been proposeidgteller and cates an acceptable fit between the model and the
Wallace 1984 Church and Gale1999. In the case data, which is confirmed by g* goodness-of-fit

of the Poisson, a commonly used robust alternatiV&St. This demonstrates that certain words seem to
is the negative binomial distributiofP@witan 2001, be adequately modeled by a Poisson distribution,
§4.5), which has the ability to capture extra-PoissoWNnose probability mass function is shown(ib:
variation in the data, in other words, it averdis- ] AX 1

persedcompared with the Poisson. When a small Poissoiid)(x) =

(1)

X! expA
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occurrencesf "any" [Hamilton] occurrencesf "were"[Madison]

Figure 1: Occurrence countsafiyin Hamilton pas- Figure 2: Occurrence counts @fere in Madison
sages: raw counts and counts predicted under a Pgmssages: raw counts and counts predicted under
son model. Poisson and negative binomial models.

For other words the Poisson distribution gives
much worse fit. Take the occurrencesaarein pa-
pers by Madison, as shown kigure 2(ibid.). We | . . .
calculate theg? statistic for the counts expected un-'tS variance, compared with thg.P0|sson..
der a Poisson model for three bins (0, 1, and 2-5, to AS More and more probability mass is concen-
ensure that the expected counts are greater than'&}ted at 0, the negative binomial distribution starts
and obtain 6.7 at one degree of freedom (numbeFO depart from the emplrlgal distribution. One can
of bins minus number of parameters minus One)ellready see this tendency in Mosteller and Wallace’s

which is enough to reject the null hypothesis thafiata, although they themselves never comment on

the data arose from a Poisg0m5) distribution. On It: The problem with a huge chunk of the proba-
the other hand, thg? statistic for a negative bino-

%and, small values aof drag the mode of the nega-
tive binomial distribution towards zero and increase

bility mass at 0 is that one is forced to say that the

mial distribution NegBifi0.45,1.17) is only 0.013 outcome 1 is still fairly likely and that the probabil-
for four bins (0, 1, 2, and 3-5), i. e., again 1 degregy should drop rapidly from 2 onwards as the term

of freedom, as two parameters were estimated froﬂ*/_X! starts to exertits influence. This is often at odds

the data. Now we are very far from rejecting the nullVith actual data.

hypothesis. This provides some quantitative back- Take the wordhis in papers by Hamilton and

ing for Mosteller and Wallace's statement that ‘eveMadison {bid., pooled from individual sections of

the most motherly eye can scarcely make twins ofable 2.3-3). It is intuitively clear thatis may

the [Poisson vs. empirical] distributions’ for certainnot occur at all in texts that deal with certain as-

words ©p. cit, 31). pects of the US Constitution, since many aspects of
The probability mass function of the negative bi-constitutional law are not concerned with any sin-

nomial distribution, using Mosteller and Wallace'sd!® (male) person. For example, Federalist No. 23

parameterization, is shown (@): (The Necessity of a Government as Energetic as the

One Proposed to the Preservation of the Uniap-

_ A T(k+x) k" (2) prox. 1800 words, by Hamilton) does not contain a

NegBin(A4, k) (x) =

X (A +K) T (k) single occurrence diis, whereas Federalist No. 72
If one recalls that the Gamma function is well be{approx. 2000 words, a continuation of No. The
haved and that Duration in Office of the Executiyalso by Hamil-
_ NS (AR ton) contains 35 occurrences. The difference is that
expA = ,!m) <1+ K> = i@w?, No. 23 is about the role of a federal government in

the abstract, and Nos. 71/72 are about term limits for
it is easy to see that NegBih, k) converges to offices filled by (male) individuals. We might there-
Poissoiid) for A constant anac — . On the other fore expect the occurrencesuf to vary more, de-
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Figure 3: Occurrence counts bisin Hamilton and
Madison passages (NB:axis is logarithmic).

Table 1: Occurrence counts bis in Hamilton and

pending on topic, thaanyor were _
Madison passages.

The overall distribution ohis is summarized in
Figure 3 full details can be found iffable 1 Ob-
serve the huge number of passages with zero oceunts for the outcome O are supplied entirely by
currences ohis, which is ten times the number of a second component whose probability mass is con-
passages with exactly one occurrence. Also noticgentrated at zero. The expected counts under the full
how the negative binomial distribution fitted usingmodel are found in the rightmost columnTdble 1
the Method of Maximum LikelihoodMLE model, The general recipe for models with large counts
first line in Figure 3 third column inTable 1) over- for the zero outcome is to construe them as two-
shoots at 1, but underestimates the number of pagsmponent mixtures, where one component is a de-
sages with 2 and 3 occurrences. generate distribution whose entire probability mass

The problem cannot be solved by trying to fit thdS assigned to the outcome 0, and the other compo-
two parameters of the negative binomial based ofent is a standard distribution, call# (). Such a
the observed counts of two points. The second lin@onstandard mixture model is sometimes known as
in Figure 3is from a distribution fitted to match the & ‘modified’ distribution(Johnson and Kofz1969
observed counts at 0 and 1. Although it fits those tw8.4) or, more perspicuously, azaro-inflated dis-
points perfectly, the overall fit is worse than that ofribution. The probability mass function of a zero-
theMLE model, since it underestimates the observeiiflated .7 distribution is given by equatiorf3),
counts at 2 and 3 more heavily. where 0< z< 1 (z< 0 may be allowable subject

The solution we propose is illustrated by the third0 additional constraints) and= 0 is the Kronecker
line in Figure 3 It accounts for only about a third deltadyo.
of the data, but_covers al! passages with one or m_oreZIy(Z’ 0)(x) =z(x=0)+(1-2) Z(6)(X) (3)
occurrences diis. Visual inspection suggests that it
provides a much better fit than the other two modeldt corresponds to the following generative process:
if we ignore the outcome 0; a quantitative comparitoss az-biased coin; if it comes up heads, generate O;
son will follow below. This last model has relaxedif it comes up tails, generate according.#x0). If
the relationship between the probability of the outwe apply this to word frequency in documents, what
come 0 and the probabilities of the other outcomeshis is saying is, informally: whether a given word
In particular, we obtain appropriate counts for theppears at all in a document is one thing; how often
outcome 1 by pretending that the outcome O odt appears, if it does, is another thing.
curs only about 71 times, compared with an actual This is reminiscent of Church’s statement that
405 observed occurrences. Recall that the modgilhe first mention of a word obviously depends
accounts for only 34% of the data; the remainingn frequency, but surprisingly, the second does



not.” (Church 2000 However, Church was con- 3 Word Frequency Conditional on
cerned with language modeling, and in particular Document Length
cache-based models that overcome some of the limi-
tations introduced by a Markov assumption. In sucMvord occurrence counts play an important role in
a setting it is natural to make a distinction betweeflocument classification under an independent fea-
the first occurrence of a word and subsequent occutire model (commonly known as “Naive Bayes”).
rences, which according to Church are influencedhis is not entirely uncontroversial, as many ap-
by adaptation(Church and Gale1999, referring Proaches to document classification use binary in-
to an increase in a word's chance of re-occurrencdéicators for the presence and absence of each word,
after it has been spotted for the first time. Fothstead of full-fledged occurrence counts (seevis
empirically demonstrating the effects of adaptationt998 for an overview). In fact,McCallum and
Church(2000 worked with nonparametric methods.Nigam (1999 claim that for small vocabulary sizes
By contrast, our focus is on parametric methods, arne is generally better off using Bernoulli indicator
unlike in language modeling, we are also intereste¥griables; however, for a sufficiently large vocab-
in words that fail to occur in a document, so it is natulary, classification accuracy is higher if one takes
ural for us to distinguish between zero and nonzer¢ord frequency into account.
occurrences. Comparing different probability models in terms
In Table 1, ZINB refers to the zero-inflated neg- of their effects on classification under a Naive Bayes
ative binomial distribution, which takes a parameassumption is likely to yield very conservative re-
ter z in addition to the two parameters of its negasults, since the Naive Bayes classifier can perform
tive binomial component. Since the negative binoaccurate classifications under many kinds of adverse
mial itself can already accommodate large fractiongonditions and even when highly inaccurate prob-
of the probability mass at 0, we must ask whether thability estimates are used¢mingos and Pazzani
ZINB model fits the data better than a simple negalt996 Garg and Roth2001). On the other hand, an
tive binomial. The bottom row ofable 1shows the evaluation in terms of document classification has
negative log likelihood of the maximum likelihood the advantages, compared with language modeling,
estimated for each model. Log odds of 2 in favor of of computational simplicity and the ability to benefit
ZINB are indeed sufficient (on Akaike’s likelihood- from information about non-occurrences of words.
based information criterion; see e.Rawitan2001, Making a direct comparison of overdispersed and
§13.5) to justify the introduction of the additional zero-inflated models with those used bicCal-
parameter. Also note that the cumulatjy&proba- Ilum and Nigam(1999 is difficult, since McCal-
bility of the x? statistic at the appropriate degrees ofum and Nigam use multivariate models — for which
freedom is lower for the zero-inflated distribution. the “naive” independence assumption is different
It is clear that a large amount of the observedlLewis, 1998 — that are not as easily extended to
variation of word occurrences is due to zero inflathe cases we are concerned about. For example,
tion, because virtually all words are rare and manthe natural overdispersed variant of the multinomial
words are simply not “on topic” for a given docu-model is the Dirichlet-multinomial mixture, which
ment. Even a seemingly innocent word liisturns adds just a single parameter that globally controls
out to be “loaded” (and we are not referring to genthe overall variation of the entire vocabulary. How-
der issues), since it is not on topic for certain disever, Church, Gale and other have demonstrated re-
cussions of constitutional law. One can imagine thaieatedly Church and Gale1995 Church 2000
this effect is even more pronounced for taboo wordshat adaptation or “burstiness” are clearly properties
proper names, or technical jargon (Church2000. of individual words (word types). Using joint inde-
Our next question is whether the observed variatiopendent models (one model per word) brings us back
is best accounted for in terms of zero-inflation ointo the realm of standard independence assump-
overdispersion. We phrase the discussion in terms tbns, makes it easy to add parameters that control
a practical task for which it matters whether a woraverdispersion and/or zero-inflation for each word
is on topic for a document. individually, and simplifies parameter estimation.



= Newsgroups fied sample of approximately 20,000 messages to-
g 10 N—— tal, drawn from 20 Usenet newsgroups. The fact
) that 20 newsgroups are represented in equal pro-
g 80 - . portions makes this data set well suited for compar-
o ing different classifiers, as class priors are uniform
3 60 - ' and baseline accuracy is low at 5%. LikécCal-

g 40 - ) lum and Nigam(1999 we used (Rain)bow\(cCal-

o lum, 1996 for tokenization and to obtain the word/
§ 20 + Binomial —e— 4 document count matrix. Even though we followed
= Bernoulli —— McCallum and Nigam’s tokenization recipe (skip-
g 0 o ping message headers, forming words from contigu-
© 10 100 1000 10000100000  ous alphabetic characters, not using a stemmer), our

vocalulary size(humberof word types) total vocabulary size of 62,264 does not match Mc-
Callum and Nigam’s figure of 62,258, but does come
Figure 4: A comparison of event models for differ-reasonably close. Also following/lcCallum and

ent vocabulary sizes on thewsgroup data set. Nigam (1998 we performed a 4:1 random split into
training and test data. The reported results were ob-

tained by training classification models on the train-
So instead of a single multinomial distributioning data and evaluating on the unseen test data.
we use independent binomials, and instead of a\we compared four models of token frequency.
multivariate Bernoulli model we use independengach model is conditional on the document length
Bernoulli models for each word. The overall joint(y,t assumes that the parameters of the distribution

model is clearly wrong since it wastes probabilityyo not depend on document length), and is derived
mass on events that are known a priori to be iImpo$;om the binomial distribution
sible, like observing documents for which the sum of
the occurrences of each word is greater than the doc- Binom(p)(x | n) = (n) P*(1—p"*,  (4)
ument length. On the other hand, it allows us to take X
the true document length into account while using | . . "
only a subset of the vocabulary, whereas on McCallich we view as a one-parameter_conditional
lum and Nigam’s approach one has to either Comrpodel, our.flrst mpdel.xrepresents the token counts
pletely eliminate all out-of-vocabulary words and0 =X =) andnis the length of the docume.nt mea-
adjust the document length accordingly, or else maz)ured as the total pumber of token counts, including
out-of-vocabulary words to an unknown-word tokertU-0-vocabulary items. . :
whose observed counts could then easily dominate. The_secondmodel 'S the_ Ber.nOl.J”' model, which
. L is derived from the binomial distribution by replac-
In practice, using joint independent models doeﬁ]g all non-zero counts with 1-
not cause problems. We replicated McCallum and '
Nigam’s Newsgroup experiment and did not find
any major discrepancies. The reader is encour-
aged to compare oUFigure 4with McCallum and — Binom(p) qxw | [nD 5)
Nigam’s Figure 3. Not only are the accuracy fig- X+1] |n+1
ures comparable, we also obtained the same criti- . : : : .
cal vocabulary size of 200 words below which the Our th'rfj mod?I IS a}n overdls_persed b'f“’m'?"
model, a “natural” continuous mixture of binomi-

Bernoulli model results in higher classification ac- . . . .
cueracoyu odel results gher classilicatio aCalswnh the integrated binomial likelihood — i. e. the

: . Beta density(6), whose normalizing term involves
The Newsgroup data setl(ang 1999 is a strati- the Beta function — as the mixing distribution.

Bernoulli(p)(x | n)

IMany of the data sets used bicCallum and Nigan{1999 a1 p-1
are available alittp://www.cs.cmu.edu/ TextLearning/ Beta(at, B)(p) = w (6)
datasets.html. ’ P)= B(Ol,ﬁ)
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The resulting mixture mode{7) is known as the sample moments with distribution moments
Polya—Eggenberger distributioddhnson and Kofz
1969 or as the beta-binomial distribution. It has zni p= ZXi,
been used for a comparatively small rangenap o )
applications (owe, 1999 and certainly deserves » N P(1—=P) (1+(n—1)7) = (x —ni p)*
more widespread attention. ' !
and solve for the unknown parameters:
BetaBin(o, 3)(x | n)

—/15' ﬁz—z_‘):_, )
= inom(p)(x| n) Beta e, B)(p) dp ?(. S B) -3
n\ B(x+ a,n—x+p) jo L TWPIAPLZP) =210 (g
() ey @ 2

. . . : . In our experience, the resulting estimates are suf-
As was the case with the negative binomial (Wh'd?iciently close to the maximum likelihood esti-

is to the Poisson as the beta-binomial is to the bino- . . o

R ) ) ... mates, while method-of-moment estimation is much
mial), it is convenient to reparameterize the distribu; . I S .
. ) ) —_faster than maximum likelihood estimation, which
tion. We choose a slightly different parameterization

. ) requires gradient-based numerical optimization
thanLowe (1999; we follow Ennis and Bi(1998 q grac . P
. . this case. Since we estimate parameters for up to
and use the identities

400,000 models (for 20,000 words and 20 classes),
o= a/(a+B) we prefer the faster procedure. Note that the
’ maximum likelihood estimates may be suboptimal

y=1/(a+p+1). (Lowe, 1999, but full-fledged Bayesian methods
(Lee and Lig 1997 would require even more com-
putational resources.

Thefourth and final model is a zero-inflated bino-

B mial distribution, which is derived straightforwardly
1-y 1 Y) ®)

, (1- p)% via equation(3):

To avoid confusion, we will refer to the distribution
parameterized in terms gfandy as BB:

BB(p,y) = BetaBin(p

After reparameterization the expectation and vari- ZIBinom(z p)(x | n)
ance are =2z(x=0)+ (1—2z) Binom(p)(x| n)

ElBB(p,7)(x|M)] =np, fFA=2a=p) if x=0

= n AV (11)
VarlBB(p,)(x| )] =n p(1—p) (1+(n—1)7). a-2(3)pa-pr ifxeo
Comparing this with the expectation and variance of Since the one parameterof a single binomial
the standard binomial model, it is obvious that th@node| can be estimated directly using equa('@)"]
beta-binomial has greater variance when 0, and  maximum likelihood estimation for the zero-inflated
for Y= 0 the beta-binomial distribution COinCideSbinomia| model is Straightforward via them al-
with a binomial distribution. gorithm for finite mixture modelsFigure 5shows

Using the method of moments for estimation isyseudo-code for a singtem update.

particularly straightforward under this parameteri- Accuracy results of Naive Bayes document classi-
zation Ennis and Bi 1999. Suppose one samplefication using each of the four word frequency mod-
consists of observingsuccesses intrials (x occur-  g|s are shown iffable 2 One can observe that the

rences of the target word in a document of length  differences between the binomial models are small,
where the number of trials may vary across samples-— _ _ _
Not that there is anything wrong with that. In fact, we cal-

Now we want to estimate parameters based on a Kilated thevLE estimates for the negative binomial models us-
quence o samplegxy,ny), ..., (Xs,Ns). We equate ing a multidimensional quasi-Newton algorithm.



1. Z—0;X—0;N<0O Bernoulli Binom ZIBinom BetaBin

ot | 1050 20 3094 2819 2948  29.93
4 if x =0then 50 45,28 44.04 44.85 45,15
5. % — 2/(z+ (1— p)™) 100 53.36 52.57 53.84 54.16
6: 7743 200 59.72 60.15 60.47 61.16
- X — X+ (1—2)% 500 66.58 68.30 67.95 68.58
8: N — X+ (1—2)n 1,000 69.31 72.24 72.46 73.20
o else{x #£0, % =0} 2,000 71.45 75.92 76.35 77.03
10: X — X +x 5,000 73.80 80.64 80.51 80.19
11 N N+n 10,000 74.18 82.61 82.58 82.58
120 endif 20,000 74.05 83.70 83.06 83.06
13: end for Table 2: Accuracy of the four models on tNews-
14: {M step} group data set for different vocabulary sizes.
15: z—Z/s
16: p«— X/N Binom Binom ZIBinom
ZIBinom BetaBin BetaBin
Figure 5: Maximum likelihood estimation of ZI- 20 0 0
Binom parametersandp: Pseudo-code for a single 50 0 m
EM iteration that updates the two parameters. 100 0 0
200 O
500
but even small effects can be significant on a test set 1,000 0
of about 4,000 messages. More importantly, note 2,000 O
that the beta-binomial and zero-inflated binomial 5,000
models outperform both the simple binomial and the 10,000
Bernoulli, except on unrealistically small vocabu- 20,000 0

laries (intuitively, 20 words are hardly adequate for o _
discriminating between 20 newsgroups, and thoskable 3: Pairwise McNemar test results. [Ain-
words would have to be selected much more carélicates a significant difference of the classification
fully). In light of this we can revise McCallum and fesults when comparing a pair of of models.
Nigam’'s McCallum and Nigan(199§ recommen-

dation to use the Bernoulli distribution for small VO-ant. in most cases not even approaching significance
cabularies. Instead we recommend that neither thg ihe 59 level. A classifier based on the beta-

Bernoulli nor the binomial distributions should bepinomial model is significantly different from one
used, since in all reasonable cases they are outpgksed on the hinomial model: the difference for a
formed by the more robust variants of the binomiajocapylary of 20,000 words is marginally significant
distribution. (The case of a 20,000 word vocabular¥the %2 value of 38658 barely exceeds the critical
is quickly declared unreasonable, since most of thgy| e of 38416 required for significance at the 5%
words occur precisely once in the training data, anbye|), Classification based on the zero-inflated bi-
so any parameter estimate is bound to be unreliablé,) mia| distribution differs most from using a stan-
We want to know whether the differences betweedard binomial model. We conclude that the zero-
the three binomial models could be dismissed asiaflated binomial distribution captures the relevant
chance occurrence. The McNemar td3iefterich  extra-binomial variation just as well as the overdis-
1998 provides appropriate answers, which are sunpersed beta-binomial distribution, since their classi-
marized inTable 3 As we can see, the classifi- fication results are never significantly different.
cation results under the zero-inflated binomial and The differences between the four models can be
beta-binomial models are never significantly differseen more visually clearly on th&#ebkB data set
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