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Abstract. Local deterministic string-to-string transductions aris natural language pro-
cessing tasks such as letter-to-sound translation or piation modeling. This class of
transductions is a simple generalization of morphisms @& fmonoids; learning local trans-
ductions is essentially the same as inference of certairoidanorphisms. However, learning
even a highly restricted class of morphisms, the so-callerfiorphisms, leads to intractable
problems: deciding whether a hypothesized fine morphisnonsistent with observations is
an NP-complete problem; and maximizing classification ey of the even smaller class
of alphabetic substitution morphisms is APX-hard. Thestatical results provide some
justification for using the kinds of heuristics that are coomy used for this learning task.
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1. Introduction

The use of machine learning has impacted the software egrgiigeof many
natural language processing (NLP) applications condiderdhe involve-
ment of domain experts has shifted away from explicit knalgke repre-
sentation and toward the creation of labeled data sets thahime learning
algorithms then generalize over in an attempt to distill ithelicitly given
expert knowledge. The machine learning approach is gdneegn as desir-
able for many kinds of applications, since it removes thednee the part
of domain experts to reason about the various declaratize paocedural
aspects of the given knowledge representation formalisifiel®nt ways
of representing expert knowledge can be explored straightfrdly by em-
ploying different kinds of learning algorithms, and the weoof a learning
algorithm with an efficient representation of the inferr@shcepts can lead to
considerable performance gains (Jansche, 2001).

This paper is concerned with the formal underpinnings ofaterNLP
applications built on very simple translation tasks that t& adequately
modeled by finite state transducers (Mohri, 1997; Roche ahdi&s, 1997).
Approaches to NLP based on finite automata suffer from a agerof theo-
retically sound and practically feasible learning aldams for inferring au-
tomata from data. This is partly due to the fact that manyseasof finite
automata cannot be learned (efficiently) from positive detder most con-
ceptualizations of learning (Gold, 1967; Pitt, 1989).
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2 M. Jansche

Some leverage can be gained by working with proper subdadsegular
languages or transductions (Angluin, 1982; Garcia an@lyith90; Oncina
et al., 1993). We focus in particular on deterministic tducers which are
local in nature, i.e., which consider some fixed, finite inpahtext when
deciding what output to generate. Local transducers, asatktelow, are
a highly restricted subclass of the generalized sequemtgadhines (Eilen-
berg, 1974) and form the basis of a number of NLP tasks, imetuspelling
correction, letter-to-sound rules (see, for example, van Bosch, 1997),
pronunciation modeling (see, for example, Gildea and 3kyafl996), etc.

We will formulate the underlying learning problems assteziawith iden-
tifying local transducers in terms of abstract optimizatjjoblems and pro-
vide an analysis of their complexity. The key result presdritere is that
efficient inference of local transducers is, under certasuaptions, impos-
sible, even in highly restricted cases. We show that degigihether there
are any local transducers consistent with a given set ofitrgisamples is an
NP-complete problem. This result affects all learning apphes that rely on
finding consistent hypotheses or on minimizing trainingperr

We proceed as follows: Section 2 provides further detailstren gen-
eral learning problem and its applications and carves aictire problems
a learning algorithm needs to solve. Section 3 analyzes dhgpatational
complexity of the core problems and discusses the imptinatfor the learn-
ability of local transductions. Section 4 concludes andfsoout directions
for further research.

2. Thelearning problem

2.1. PRACTICAL APPLICATION: LETTER-TO-SOUND RULES

The learning problem we are concerned with is illustratecspecific NLP
task, namely learning letter-to-sound rules (see, for gptanrlucassen and
Mercer, 1984; Sejnowski and Rosenberg, 1987; van den B&S8&iT) by gen-
eralizing over a pronunciation dictionary, under certaiodlity assumptions
discussed below. In this task the training samples are pais¢rings, con-
sisting of a string of letters, for examplehoe$, and a string of phonemes,
for example fuz/. Note that no positional correspondence or other relation
between individual letters and phonemes is specified, whitthsay one does
generallynot know whether e. g. the second symboljimz/, the phoneme/,
corresponds to the second symbok&moe$, the letter(h). In this sense the
present task is markedly different from some other commoR Kidsks, such
as part-of-speech assignment, where explicit correspmsdebetween input
and output symbols exist.
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In general, a letter string may correspond to a longer phensiming, for
example!

(mutualism (9 letters)

/mjutfowolizom/ (12 phonemes),

or to a shorter phoneme string, such as

(featherweight (13 letters)
[fedawet/ (7 phonemes);

and even if the two strings happen to have the same length, as i

(parliamentarianism(18 letters)

/pailomonterionizom/ (18 phonemes),
no meaningful positional correspondences are implied. tMassting ap-
proaches assume that letter strings are of equal lengthngetothan their
corresponding phoneme strings. While clearly false in asoklte sense, this
assumption is true for most English words — it holds for mdvant 98% of
the entries in the CMU pronouncing dictionary — and workawsifor cases
where it seems to break down have been suggested, for ex#meglanscrip-
tion conventions used by NETtalk (Sejnowski and Rosend&€g§7). We will
adopt the same simplifying assumption here, since it allow/$o treat the
mapping from letter strings to phoneme strings as invohamdy deletions
and substitutions, but not insertions.

Learning letter-to-sound rules can be conceptualizedasgratical infer-
ence of specific subclasses of rational transductions. Heoclass of subse-
guential transductions, limit-identification is possitds Oncina et al. (1993)
have shown. Their learning algorithm has been applied talibsely related
problem of phonemic modeling (Gildea and Jurafsky, 1996}, dnly af-
ter modifications and incorporation of domain-specific kiemge. It can be
shown (Jansche, 2003) that the algorithm proposed by Omtiah (1993)
has poor out-of-class behavior and is brittle in the presariémperfect data;
furthermore its hypothesis space, the class of subse@li¢rainsductions, is
arguably too general for the present task. Almost all apgrea to learning
letter-to-sound rules assume, justifiably (Lucassen and&te1984), that the
hypothesis space is restricted to the analog of the locadiable languages in
the strict sense (McNaughton and Papert, 1972), which muigililentifiable
(Garcia and Vidal, 1990). We call the analogous class oftiactiondocal
transductionsLocal transductions are a proper subclass of the subsgagluen
transductions, and as such are limit-identifiable (Oncirel.e1993).

Just as locally testable languages are accepted by scatnaraa, local
transductions are computed by scanner transducers, whiste @ sliding
window of fixed size across the input string and produce agstaf output

1 The following examples are taken from the CMU pronouncirgidnary (Weide, 1998).
The original phonemic transcription system has been clthtgéPA (International Phonetic
Association, 1999).
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4 M. Jansche

symbols for each window position; concatenating theseudgpings yields
the overall output of the transducer. For example, therietteng (shoe$
might be processed by a scanner with a three-letter windtwghwencounters
the following substrings and produces an output phonemedoh window
position:

#sh sho hoe oes es#
| u z

Since the size of the sliding window is fixed and known a prionie may
assume without loss of generality that it is 1: if a larger dadw sizen is
needed, one can simply change the input alphabet to corsistuples of
symbols, and such a modified alphabet is obviously stilldimtiternatively,
one can think of this modification as a preprocessing stejpaies a simple
subsequential transducer to each input string. In our nghexample, this
would mean that the string of letters

(shoes

is first deterministically transformed by a subsequentiah$ducer into the
string of letter triples

(#sh sho hoe oes es#

which is then handed to a scanner with a sliding window of diz&lote
that this preprocessing step is an isomorphic mapping wtriekerves string
length. A restricted scanner with a one-symbol window camttio the same
work done by the three-letter scanner earlier in this examipl other words,
the accumulation of input context can be treated as a detétici prepro-
cessing step and does not affect the core of the learnindgmmold he learning
problem itself has been simplified, since we only need to eonourselves
with transductions that operate on input strings symbolyogisol.

2.2. MORPHISMS OF FREE MONOIDS

Sequential transductions that examine individual inpumisgls (individual
letters, orn-tuples of letters after preprocessing) without taking aoptext
into account can be realized by generalized sequential imekvith a trivial
one-state topology and correspond exactly to morphismgsesf lmonoids
(Eilenberg, 1974, p. 299). The subsequent discussion affirrto a finite
setZ of input symbols and a finite s€tof output symbols. The free monoid
generated by is called (¥*,-), or Z* for short, and has the property that
every element (stringy € £* has a unique factorization in terms of elements
(symbols) ofz. This means that a morphisgn 2* — I'* from the free monoid
>* to the free monoid * is completely characterized loys, the restriction of

g to the input alphabeX. Conversely, this allows us to define the following
notion:
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DEFINITION 1 (Free monoid morphism). Given a functionZ — I'* define
f* to be the unique monoid morphisfii: Z* — I* such thatf *(x) = f(x) for
all x € Z; moreoverf* preserves the monoid’s produtt(yz) = f*(y) f*(2)
(for all y,z€ £*) and unit element*(¢) = ¢.

At the core of the learning task is then the problem of findinguaable
function f : £ — I'* mapping from individual input symbols to output strings.
In this paper we focus on two classes of functions. The filgsrestricts
the codomain to strings of length one. fif: ¥ — I' is such a function —
an alphabetic substitution — thdrf is avery fine morphismaccording to
Eilenberg (1974: 6). The second class is a superset of thefidsallows the
empty string in the codomain. Eilenberg (1974) calls thepham f* afine
morphismif its underlying functionf is of typeX — {€}UT . For the specific
problem of learning letter to sound rules, we restrict ouerdion to fine
morphisms, since by our previous assumption letter strargsever shorter
than their corresponding phoneme strings, so a fine morphisformally
adequate. In general we may want to consider other kinds gbmsms, for
example those arising from functions of type— {&} UT U2, However,
most practically relevant classes of morphisms will camthie class of fine
morphisms, and therefore the problems arising from the dséne mor-
phisms will carry over to more general settings. By restigbur attention to
fine morphisms we have narrowed down the initial learning tamsiderably,
as the hypothesis spattis now the set of functions of type — {e}UT,
which is always finite (though usually very large) for fixedittnalphabets
andl". Moreover, since logH| = |Z| log(1+ |I'|) the sample complexity for
this hypothesis space is polynomial.

2.3. CONSISTENT HYPOTHESES AND LOSS FUNCTIONS

Polynomial sample complexity is one of the two key ingretiefor PAC
learnability (Valiant, 1984; Kearns and Vazirani, 1994k bther being com-
putational complexity, which is the topic of the next seatitlowever, the
present problem does not meet all conditions of the PAC iegifnamework,
which assumes the existence of consistent hypothesesoiifséstent hypoth-
esis could be found for a sufficiently large training set — theo words,
if there were a fine morphism consistent with all entries inuffigently
large training dictionary — the PAC learning framework wagive us certain
guarantees about the quality of such a hypothesis.

The assumption of consistent hypothesis is not exclusifRA learning.
In fact, most classical conceptualizations of learninglased on the same
assumption, including identification in the limit (Gold,&#®. That is to say,
these frameworks assume that a learner which can identifyesn goncept
class will be presented with clean training data which fliate a concept
from that same class.
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6 M. Jansche

Unfortunately, this assumption is untenable in many pecattituations,
since the details of the process which generated the tcadtaia are generally
unknown. In the case of letter-to-sound rules, for examplegassen and
Mercer (1984) have demonstrated empirically that the ttacson process
is overwhelmingly local. However, there are no theoretgadrantees of lo-
cality, so modeling letter-to-sound rules with local trdnstions has to be
viewed as an approximation, albeit a very good one. A leasheuld be able
to gracefully deal with deviations from this assumptiorgalless of whether
they arise from real deficiencies of the model (i. e., the teadsduction pro-
cess is actually not local) or from deficiencies of the trgndata due to
inconsistencies.

In other words, in practice one is often interested in findihg ‘best’
hypothesis, regardless of whether it is consistent withttaming data. In
this situation learning is better conceptualized as ergdirisk minimization
(but see Minka, 2000), or more formally as agnostic learrflkgarns et al.,
1992).

Here we focus exclusively on empirical risk minimizationhish says
that the ‘best’ hypothesis is one whose empirical risk isimal among all
competing hypotheses. In our case, the empirical R@k of a hypothesis
h:2* — " isits average loss on a (multi)set of training sam@es >* x I'*,
namely

R == 3 Lh(x.y)
Dl (freo

whereL : T x ' — Qx> is a so-calledoss functionassigning a non-negative
rational number (loss) to each pair of output strings. Thestmo@mmonly
used generally applicable loss functions for comparingngérare zero—one
loss

o foify=y
Lia(Y,y) = { 1 otherwise

and L, ey, the Levenshtein string edit distance (Wagner and Fiscti¥f4;
Kruskal, 1983). Both kinds of loss play a role in evaluatietidr-to-sound
rules: for example, Damper et al. (1999: 164) use zero—os® nd Fisher
(1999) uses string edit distance (see also Jansche, 2003).

We adopt the usual requirement thaty’,y) = 0 if and only ify =y,
which is obviously the case fary, and also holds fok ¢, provided the cost
for matches is zero and the costs for insertions, deletiomssabstitutions
are all nonzero, which is the case for the traditional Letsia distance
(Kruskal, 1983). The only other condition we impose is thus| functions
be computable in polynomial time, since otherwise efficiemipirical risk
minimization would be hopeless from the start. Zero—one ken be com-
puted in linear time, and edit distance in quadratic tim@mais well-known
dynamic programming algorithm (Wagner and Fischer, 19&#efficiently
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computable metrics (in the sense of metric spaces) quaifgss functions,
though we do not require loss functions to be symmetric oratisfy the
triangle inequality. The requirement thiaty’,y) = 0 iff y =y is crucial in
our case, since it allows us to tie empirical risk minimieatio the existence
of consistent hypotheses: observe tRét) = 0 iff his consistent.

To summarize, the task of learning letter-to-sound rulegeseas an illus-
tration of the problem of learning local transductions, e¥hihas at its core the
problem of inferring morphisms of free monoids. We focus loa testricted
problem of learning so-called fine morphisms, which leadsftoite hypothe-
sis space that is formally adequate for letter-to-sounasttactions. Learning
will initially be viewed as empirical risk minimization used arbitrary loss
functions, as defined above.

3. Computational complexity

3.1. OPTIMIZATION PROBLEM

The problem of finding a functiorf : £ — {e} Ul for which the empir-
ical risk R(f*) is minimal is fundamentally a combinatorial optimization
problem. Like all such problems it can be stated formally iffiedent ways
(Papadimitriou and Steiglitz, 1998, p. 345f.): thyaimization versiomsks for
the optimalf for which the riskR(f*) is minimal on a given set of samples
D C * x I'*; theevaluation versiorasks for the average lo&% f*) incurred
on D by the optimalf, but does not demand that we find that optirhahnd
thedecision versiomf the empirical risk minimization problem asks whether
there exists arf such that the average loss incurred by itlrns less than
or equal to a given budgét that is, whether or noR(f*) < k for somef.

A solution to the optimization version could be used to cartttan answer
to the evaluation version, which in turn could be used toeadhe decision
version. Contrapositively, if the decision version is h&wdsolve, so are the
other two versions.

The decision version of the empirical risk minimization lpkem can now
be stated formally, for any fixed loss functidnthat satisfies the criteria set
out in the preceding section. The formal problem is preskmtehe familiar
format used by Garey and Johnson (1979).

PROBLEM 1 (Fine Morphism Minimization)nstance:A finite (multi)set
D C Z2* x I'* of training samples; and a non-negative rational nunkhéne
risk budget.Question:ls there a functiorf : £ — {e} UT, corresponding to
a fine morphismf*, such thak- D[ > ¥ yep L(f*(X),y)?

This is the most general problem we consider, but we will nietuss
it much further, since its complexity may depend on the tetai the loss
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8 M. Jansche

function L. However, because we requitdy’,y) = 0 iff y =y for all loss
functionsL considered here, there is a common subproblem of the daecisio
version which is independent of the loss function used. Ifsgethe risk
budget to zero, we obtain a restricted decision version whigks whether
there exists arf such that the risR(f*) incurred orD is identically zero. We
call this theconsistency problepsinceR(f*) = 0 means thaf* is consistent
with the training datdD. Obviously, if the decision version of the optimiza-
tion problem can be solved efficiently, so can the consistearoblem. In
other words, the formal problems considered so far can l@ged in non-
decreasing order of difficulty like this: consistency pemil, decision version,
evaluation version, and optimization version of the optiation problem. By
establishing NP hardness of the easiest of these four pnsblHP hardness
of the other problems follows straightforwardly.

3.2. CONSISTENCY PROBLEM

Before we can formally state the consistency problem ugatgylthe learning
task, we need another auxiliary definition:

DEFINITION 2 (Graph of a relation). Given a relatidR on setsA and B,
define #R, thegraph of R to be the sef(a,b) € (Ax B)|aRb}.

Two closely related consistency problems can now be defilsie@nswer
to the questions asked by these problem would tell us whethairitable
morphism exists that perfectly fits the training dBxa

PROBLEM 2 (Very Fine Morphism Consistency — VFMdnstance:A fi-
nite (multi)setD C 2* x '* of training samplesQuestion:Does there exist a
very fine morphism consistent with all elementdXfi.e., is there a function
f:X—T suchthaD C#(f*)?

PROBLEM 3 (Fine Morphism Consistency — FMQhstanceA finite (multi)-
setD C 2* x '* of training samplesQuestion:Does there exist a fine mor-
phism consistent with all elements B, i.e., is there a functiorf : ~ —
{e}UT such thaD C #(f*)?

The size of an instance of one of these problems is the totgtheof all
strings in the training dictionarip:

DEFINITION 3 (Dictionary size). Define the siZéD|| of a dictionaryD C
2*xI* as
D] = g X[ + 1yl
(xy)ED

where|x| is the length of string.
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1: {Input: instanceD, certificatef }
2: for all (x,y) € D do

3: j—1

4. fori+1to|x|do

5: if f(x)# € then

6: if j > |yl then

7: return False

8: eseif f(x) #y; then
9: return False

10: else { f(x) matchesy; }
11: j—J+1

12:  if j #|y|+1then

13: return False

14: return True
Figure 1. Certificate verification algorithm for FMC.

Of the two problems formulated here, FMC (Problem 3) is ititaly
more difficult than VFMC (Problem 2), since one has to decidhctv input
symbols are mapped to the empty string, or equivalently, éiowutput string
should be aligned with its corresponding input string. Téssie does not arise
with VFMC, since only strings of equal length need to be coasad (ifD
contains a pair of strings with different lengths, then noyvine morphism
can be consistent witB). It will be shown that FMC is a complete problem
for the complexity class NP (see, for example, Garey and slwihnl979).
Membership of FMC in NP can be established straightforwardl

THEOREM 1.Problem FMC has succinct certificates that can be verified in
polynomial time.

Proof. A certificate for FMC is a partial functiorf : * — {e}UT, which

can be represented in space lineaf{i| (becausef only needs to mention
elements of that occur inD). Verification amounts to applying* to each
input string inD and comparing the results to the corresponding reference
output. The verification procedure, shown in Figure 1, rumignear time and
logarithmic space (a fixed number of counters need to bedjtore O

Problem VFMC for very fine morphisms is indeed much easien firab-
lem FMC involving fine morphisms. In fact, VFMC can be solvdiicently
in linear time and space by the following procedure: for eacly) € D, for
i — 1 to |x|, assign (destructively¥ (x;) < vy;; finally run the verification
algorithm from Figure 1 oD and f, and return its answer.

NP-hardness of FMC is established by a reduction from 3Sid dieci-
sion problem asking whether there is a satisfying truthgeseent for a set
(conjunction) of disjunctive clauses with at most threerlils each, where a
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10 M. Jansche

literal consists of a plain Boolean variable or of a negated|Ban variable.
In other words, an instance of 3SAT is a formgan Conjunctive Normal
Form with 3 literals per clause (3CNF), and the problem isdoide whether
there is a satisfying truth assignment tpithat makes all clauses True. We
first define the individual pieces (gadgets) of the reducfrom 3SAT and
then prove that the reduction correctly preserves the sire©f 3SAT.

DEFINITION 4 (Boolean variable gadget). For any Booleanalale v, the
set)(v) contains the following pairsa( andb, are two new symbols depen-
dent onv):

(ayvvhb, FTF),
(avby,F).

The Boolean variable gadget encodes the fact that a vaablaring in a
3CNF formula can take on only the valuégTrue) andF (False). It consists
of two entries that will become part of a larger dictionannstyucted by the
reduction. As will become clear below, a fine morphism thabissistent with
that dictionary can map the symbalgndvonly toT or F, and mapyto T
iff it mapsv to F. To ensure thaa, andb, do not appear in any gadgets for
other, unrelated variables, new concrete symbgksndb, have to be chosen
for each variablev. It is easy to see thdd/(v)| = 10.

DEFINITION 5 (3SAT clause gadget). For any 3SAT cla@eof the form
(li1 V62 v Ii3) (where eachH;; is a literal of the formv or V) the setC(G;)
contains the following pairsc(j, dij, & and f; for 1 < j < 3 are eight new
symbols dependent ajt

(Cilindir, FT),
(Cizli2diz, FT),
(cigliadis, FT)
(dipdizdizeg i, TT).

The 3SAT clause gadget represents the constraint that auaetl of the
form (I1 V12V I3) at least one literal; must be true for the overall formula
to be satisfied. We will see shortly that a fine morphism mugp aialeast
one literalljj to T and the adjacent symbal; to € in order for it to be
consistent with the fourth pair in this dictionary. As in tBeolean variable
gadget, the symbols other than those corresponding talster variables
of the original formula must be unique for each clause, sbitiere are no
additional constraints between clauses not present in@=formula. For
each claus€ we have||C(C)|| = 22.

DEFINITION 6 (Reduction from 3SAT). Given an instance

n
o= /G
i—1

)
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of 3SAT, defineD(g) as the collection

n

Jc(@) u | J{v(v) |variablev occurs ing}.

i=1

For example, ifp = (x VX VYY), the dictionaryD(¢) defined by this reduc-
tion contains the following entries:

(axxXb,FTF), (exf,FT),
(ab, F), (GXhFT),
(cyyd, FTF), (iyj,FT),
(cd,F), (fhjkl,TT).

THEOREM 2.The reduction from 3SAT to FMC can be computed in loga-
rithmic space and creates an instance whose size is linetirarsize of the
original instance.

Proof. The reductionD, which can be made to run in linear time, builds
a collection (dictionary)D(¢) with the following properties. Leh be the
number of clauses op (as in Definition 6), and letm be the number of
distinct variables ofp (som < 3n). Then the dictionary size (see Definition 3)
is |D(@)|| = 10m—+22n < 52n, the number of pairs in the dictionary is
|D(@)| = 2m+4n < 10n, the size of the input alphabet || = 4m+8n <
20n, and the size of the output alphabet|i$ = 2. Only counters need to
be stored for computing the reduction (in order to keep trafcklauses and
variables represented by integers), which requires ltdgait space. O

We are now ready to derive the main result, which shows theidde
whether a fine morphism exists that is consistent with a gilietionary is at
least as hard as any other problem in NP.

THEOREM 3.Problem FMC isNP-hard.

Proof. We show that the 3CNF formul@ = A", C; is satisfiable iff there
exists a fine morphisnfi* consistent wittD(g). It will be convenient to leV
denote the set of distinct variables q@f

(=) Assume thatp is satisfiable, i.e., there exists a satisfying assignment
1:V — {T,F}. Incrementally define a fine morphisiit consistent with
D(@) as follows: for allv e V, let f(v) = 1(v) and f (V) = W If T(v) =T,
let f (a,) = F andf (by) = £, which maked * consistent witiV(v); otherwise,
if T(v) =F, let f(a,) = € andf(by) = F to makef* consistent with’(v). In
either casef* can be made consistent with(v), and because, andb, do
not occur outside the gadget fgrf* can be made consistent with all variable
gadgets.
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12 M. Jansche

The fact thatr is a satisfying assignment means that in each cl&use
least one literal is made True iy So f will map at most twod;; in C(Cj)
to T, and therefore the definition df* can always be extended to make it
consistent with the fourth pair i6(C;) and hence consistent with the entire
clause gadget fd€;. Since all symbols in a clause gadget other than literals
of ¢ occur only in that gadget, the definition 6f can be extended to make it
consistent with all gadgets and therefore consistent Witp). Hence there
exists a consistent fine morphisft constructible front.

(<) Conversely, assume that a fine morphignconsistent withD(¢)
exists. Show thag|y, i.e. g restricted to the variables @, is a satisfying
truth assignment fop. The morphisng being consistent wittD(¢) means
thatg is consistent with all variable gadgets and all clause g&dge

Pick any variable gadgét(v). Then, because of the second paivifv), g
must map exactly one @, andb, to F: if g(a,) = F theng(b,) = &, and for
the first pairg(v) = T andg(V) = F; otherwise ifg(b,) = F theng(a,) = &,
g(v) = F, andg(v) = T. Note in particular thatglv)(v) € {T,F}, soglv is
formally a truth assignment.

Now pick any clause gadgé{(C;) and suppose thatmaps nd;; in C(C;)
to T. Then alld;; in C(Cj) are mapped t@ because of the first three pairs in
that clause gadget. But this would magénconsistent with the fourth pair,
contradicting the assumption thagis consistent with all clause gadgets. So
g must map at least orlg in C(C;) to T, which means thagly makes the
clauseC; True, and is therefore a satisfying truth assignmentgor O

The choice of output alphabEt= {T,F } was made merely for expository
convenience. What makes FMC a hard problem is not the chéicepping
input symbols tdr' or F, but the choice of whether to delete an input symbol
by mapping it to the empty string. It is in fact possible to modify the re-
duction so thatl'| = 1 without changing the main theorem, though its proof
would be somewhat less intuitive.

3.3. CONSEQUENCES

The preceding three theorems together imply that the ciemgig problem
FMC is NP-complete. The existence of efficient algorithmssfaving FMC
is therefore unlikely. In practice, it is not sufficient todwm whether a con-
sistent fine morphism exists, we also need to find such a mewptitven if
an oracle could tell us that there is at least one consistempmsm, find-
ing one is still a difficult problem, analogous to the 3SAT dtion problem
for satisfiable formulas, which is FNP-complete (Papadimit 1994). The
fact that consistency problem is hard also means that PAGitepof local
transductions based on fine morphisms is impossible.

Since FMC is a special subproblem of empirical risk minirticza, it
follows immediately that the decision version of this opgdation problem

manuscript.tex; 18/08/2004; 7:04; p.12



Learning Local Transductions is Hard 13

is NP-hard. It is also NP-complete, since by our earlier emdion the loss
functionL can be evaluated efficiently in polynomial time: a proposald-s
tion f for the decision version can be verified efficiently by aggitery the
total loss off* on the training dat® and comparing it against the loss bound
k-|D|. Not surprisingly, the certificate verification algorithm Figure 1 is

a special case of this more general verification algorithmtlie decision
version of the empirical risk minimization problem.

The evaluation and optimization version of empirical risknimization
do not necessarily fall within the analogous class FNP ottion problems.
To show membership in FNP, we need to be able to verify theraity of
a proposed solutiorf in polynomial time. However, an optimal solutioh
only certifies the existence of a feasible solution (nanf@lwithin a certain
budgetk (namely the average loss éf on the training data), but does not
seem to provide enough information to verify in polynomiaié that no bet-
ter solution within a tighter budget &— d can exist. It is highly doubtful that
there are any polynomial-length certificates of optimaltje conjecture that
these problems are in fact RRcomplete, just like the Traveling Salesperson
Problem TSP (see, for example, Papadimitriou, 1994).

4, Conclusionsand directionsfor further research

We have reduced the problem of learning local transductionthe prob-
lem of learning morphisms on free monoids, after factoring @n optional
preprocessing step that accumulates fixed amounts of doffiteximportant
restricted problem of deciding whether there exists a fingpfmiem consis-
tent with a set of training samples was shown to be NP-comp&ihce this
problem is a specialization of the decision version of efogirisk minimiza-
tion under many reasonable loss functions, the optimiagtimblems which
generalize the consistency problem are therefore at Isadiffacult.

While the main result of this paper seems discouraging,safidt lost.
Given that the existence of exact efficient algorithms fdvisg the over-
all optimization problem is unlikely, one should considke talternatives:
approximate, inefficient, and/or heuristic algorithms.

4.1. COMPLEXITY OF APPROXIMATION

Approximate inference of consistent automata is geneeallgry hard prob-
lem (Pitt and Warmuth, 1993). For the special cases coreidbere, the
complexity of approximate inference is not well understapthis point, and
our initial results reported elsewhere (Jansche, 2003)arendetail are not
encouraging.

Empirical risk minimization can now mean one of two thingsnimizing
the total number of mistakes a hypothesis makes on the ricpidata, or
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maximizing the number of correct predictions on the tragnilata. These two
notions are equivalent if optimal solutions can be foundcctyabut differ for
approximate solutions. Say the true optimum is 10 mistakes0® samples,
and the optimum can be approximated within a factor of 1.2r@gmate
maximization would find a solution with at most 16®0/1.2 = 25 mistakes,
but approximate minimization yields a solution with at métx 1.2 = 12
mistakes.

Even for highly restricted problems the prospects are ralieak. The
optimization problem that asks us to maximize empiricahgtievel classi-
fication accuracy (the dual of empirical zero—one loss,steng-level clas-
sification error) for very fine morphisms will be called MAXRMC. It is
initially far from clear whether MAX-VFMC is an easy or a hapdoblem —
recall that we showed in Section 3.2 that VFMC can be solvegleficiently
— but it turns out (Jansche, 2003) that MAX-VFMC is APX-hails§iello
et al., 1999), which can be shown by a reduction from an APXyuete
constraint satisfaction problem. Unless-RNP, this means that MAX-VFMC
has no polynomial time approximation schemes (PTAS, whiohld/allow
us to find arbitrarily good approximations efficiently). lmetbest case, there
may be an approximation algorithm for MAX-VFMC with a fixed@pxi-
mation ratio, which would make MAX-VFMC a member of the clad3X;
whether or not this is the case is an open question. Similkestquns regarding
the complexity of related optimization problems also remapen (Jansche,
2003).

4.2. INEFFICIENT ALGORITHMS

Exact global optimization of MAX-VFMC is theoretically psible via branch-
and-bound search. This inefficient algorithm can be useddr small prob-
lem instances, e.qg., learning English letter-to-soundsrwith no condition-
ing context, for which only a few trillion morphisms have te lexplored
(Jansche, 2003). However, exhaustive search becomestatiia for even
slightly larger problems: for English letter-to-soundesiiconditioned on one
letter of context there are more than one trequadragimilfeasible solutions.
General heuristic algorithms, especially those based oal Isearch (Aho
etal., 1983; Papadimitriou and Steiglitz, 1998), are effitand do in practice
improve on greedily constructed initial solutions, butesfho performance
guarantees. Inefficient and heuristic algorithms for sgvBoolean satisfia-
bility problems have been investigated in detail and migékdynew insights
on solving the formal problems presented in this paper.

4.3. HEURISTICS

Efficient heuristics developed specifically for learningide-to-sound rules
have been in use for at least two decades (Lucassen and ME®84d). Most
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of them reduce the problem of learning local transductians tclassifier
learning problem similar to what we have called MAX-VFMC, iafh in-
volves padding the data with dummy symbols to make input aplub strings
equal in length. Unfortunately, this reduction does nospree the structure
of the original problem (Jansche, 2003), so that even if amap classifier
could be found — which can be a hard problem in itself (Hyafd &ivest,
1976) — it would not necessarily be an optimal solution fer dniginal learn-
ing problem. It is because of this disconnect that the ti@utl approaches to
learning letter-to-sound rules have to be seen as heuristic

Although such approaches may seem ad hoc, there have beanbemnu
of empirical investigations (Damper et al., 1999; Bakirdlddietterich, 2001)
that find heuristic machine learning techniques preferaéblnowledge rep-
resentations built by human experts, though the issue renm@intentious
(Sproat et al., 1998). Since we concluded that the existehc®und and
efficient learning algorithms for local transductions idikely, this can be
seen as additional justification for the use of heuristics.
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