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Abstract. Local deterministic string-to-string transductions arise in natural language pro-
cessing tasks such as letter-to-sound translation or pronunciation modeling. This class of
transductions is a simple generalization of morphisms of free monoids; learning local trans-
ductions is essentially the same as inference of certain monoid morphisms. However, learning
even a highly restricted class of morphisms, the so-called fine morphisms, leads to intractable
problems: deciding whether a hypothesized fine morphism is consistent with observations is
an NP-complete problem; and maximizing classification accuracy of the even smaller class
of alphabetic substitution morphisms is APX-hard. These theoretical results provide some
justification for using the kinds of heuristics that are commonly used for this learning task.
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1. Introduction

The use of machine learning has impacted the software engineering of many
natural language processing (NLP) applications considerably. The involve-
ment of domain experts has shifted away from explicit knowledge repre-
sentation and toward the creation of labeled data sets that machine learning
algorithms then generalize over in an attempt to distill theimplicitly given
expert knowledge. The machine learning approach is generally seen as desir-
able for many kinds of applications, since it removes the need on the part
of domain experts to reason about the various declarative and procedural
aspects of the given knowledge representation formalism. Different ways
of representing expert knowledge can be explored straightforwardly by em-
ploying different kinds of learning algorithms, and the choice of a learning
algorithm with an efficient representation of the inferred concepts can lead to
considerable performance gains (Jansche, 2001).

This paper is concerned with the formal underpinnings of certain NLP
applications built on very simple translation tasks that can be adequately
modeled by finite state transducers (Mohri, 1997; Roche and Schabes, 1997).
Approaches to NLP based on finite automata suffer from a shortage of theo-
retically sound and practically feasible learning algorithms for inferring au-
tomata from data. This is partly due to the fact that many classes of finite
automata cannot be learned (efficiently) from positive dataunder most con-
ceptualizations of learning (Gold, 1967; Pitt, 1989).
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2 M. Jansche

Some leverage can be gained by working with proper subclasses of regular
languages or transductions (Angluin, 1982; Garcı́a and Vidal, 1990; Oncina
et al., 1993). We focus in particular on deterministic transducers which are
local in nature, i.e., which consider some fixed, finite inputcontext when
deciding what output to generate. Local transducers, as defined below, are
a highly restricted subclass of the generalized sequentialmachines (Eilen-
berg, 1974) and form the basis of a number of NLP tasks, including spelling
correction, letter-to-sound rules (see, for example, van den Bosch, 1997),
pronunciation modeling (see, for example, Gildea and Jurafsky, 1996), etc.

We will formulate the underlying learning problems associated with iden-
tifying local transducers in terms of abstract optimization problems and pro-
vide an analysis of their complexity. The key result presented here is that
efficient inference of local transducers is, under certain assumptions, impos-
sible, even in highly restricted cases. We show that deciding whether there
are any local transducers consistent with a given set of training samples is an
NP-complete problem. This result affects all learning approaches that rely on
finding consistent hypotheses or on minimizing training error.

We proceed as follows: Section 2 provides further details onthe gen-
eral learning problem and its applications and carves out the core problems
a learning algorithm needs to solve. Section 3 analyzes the computational
complexity of the core problems and discusses the implications for the learn-
ability of local transductions. Section 4 concludes and points out directions
for further research.

2. The learning problem

2.1. PRACTICAL APPLICATION: LETTER-TO-SOUND RULES

The learning problem we are concerned with is illustrated bya specific NLP
task, namely learning letter-to-sound rules (see, for example, Lucassen and
Mercer, 1984; Sejnowski and Rosenberg, 1987; van den Bosch,1997) by gen-
eralizing over a pronunciation dictionary, under certain locality assumptions
discussed below. In this task the training samples are pairsof strings, con-
sisting of a string of letters, for example〈shoes〉, and a string of phonemes,
for example /Suz/. Note that no positional correspondence or other relation
between individual letters and phonemes is specified, whichis to say one does
generallynot know whether e.g. the second symbol in /Suz/, the phoneme /u/,
corresponds to the second symbol in〈shoes〉, the letter〈h〉. In this sense the
present task is markedly different from some other common NLP tasks, such
as part-of-speech assignment, where explicit correspondences between input
and output symbols exist.
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Learning Local Transductions is Hard 3

In general, a letter string may correspond to a longer phoneme string, for
example,1

〈mutualism〉 (9 letters)
/mjuÙ@w@lIz@m/ (12 phonemes),

or to a shorter phoneme string, such as
〈featherweight〉 (13 letters)
/fEDÄwet/ (7 phonemes);

and even if the two strings happen to have the same length, as in
〈parliamentarianism〉 (18 letters)
/paôl@m@ntEôi@nIz@m/ (18 phonemes),

no meaningful positional correspondences are implied. Most existing ap-
proaches assume that letter strings are of equal length or longer than their
corresponding phoneme strings. While clearly false in an absolute sense, this
assumption is true for most English words – it holds for more than 98% of
the entries in the CMU pronouncing dictionary – and workarounds for cases
where it seems to break down have been suggested, for examplethe transcrip-
tion conventions used by NETtalk (Sejnowski and Rosenberg,1987). We will
adopt the same simplifying assumption here, since it allowsus to treat the
mapping from letter strings to phoneme strings as involvingonly deletions
and substitutions, but not insertions.

Learning letter-to-sound rules can be conceptualized as grammatical infer-
ence of specific subclasses of rational transductions. For the class of subse-
quential transductions, limit-identification is possible, as Oncina et al. (1993)
have shown. Their learning algorithm has been applied to theclosely related
problem of phonemic modeling (Gildea and Jurafsky, 1996), but only af-
ter modifications and incorporation of domain-specific knowledge. It can be
shown (Jansche, 2003) that the algorithm proposed by Oncinaet al. (1993)
has poor out-of-class behavior and is brittle in the presence of imperfect data;
furthermore its hypothesis space, the class of subsequential transductions, is
arguably too general for the present task. Almost all approaches to learning
letter-to-sound rules assume, justifiably (Lucassen and Mercer, 1984), that the
hypothesis space is restricted to the analog of the locally testable languages in
the strict sense (McNaughton and Papert, 1972), which are limit-identifiable
(Garcı́a and Vidal, 1990). We call the analogous class of transductionslocal
transductions. Local transductions are a proper subclass of the subsequential
transductions, and as such are limit-identifiable (Oncina et al., 1993).

Just as locally testable languages are accepted by scanner automata, local
transductions are computed by scanner transducers, which move a sliding
window of fixed size across the input string and produce a string of output

1 The following examples are taken from the CMU pronouncing dictionary (Weide, 1998).
The original phonemic transcription system has been changed to IPA (International Phonetic
Association, 1999).
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4 M. Jansche

symbols for each window position; concatenating these output strings yields
the overall output of the transducer. For example, the letter string 〈shoes〉
might be processed by a scanner with a three-letter window, which encounters
the following substrings and produces an output phoneme foreach window
position:

#sh sho hoe oes es#

S u z

Since the size of the sliding window is fixed and known a priori, one may
assume without loss of generality that it is 1: if a larger window sizen is
needed, one can simply change the input alphabet to consist of n-tuples of
symbols, and such a modified alphabet is obviously still finite. Alternatively,
one can think of this modification as a preprocessing step that applies a simple
subsequential transducer to each input string. In our running example, this
would mean that the string of letters

〈s h o e s〉

is first deterministically transformed by a subsequential transducer into the
string of letter triples

〈#sh sho hoe oes es#〉,

which is then handed to a scanner with a sliding window of size1. Note
that this preprocessing step is an isomorphic mapping whichpreserves string
length. A restricted scanner with a one-symbol window can then do the same
work done by the three-letter scanner earlier in this example. In other words,
the accumulation of input context can be treated as a deterministic prepro-
cessing step and does not affect the core of the learning problem. The learning
problem itself has been simplified, since we only need to concern ourselves
with transductions that operate on input strings symbol by symbol.

2.2. MORPHISMS OF FREE MONOIDS

Sequential transductions that examine individual input symbols (individual
letters, orn-tuples of letters after preprocessing) without taking anycontext
into account can be realized by generalized sequential machines with a trivial
one-state topology and correspond exactly to morphisms of free monoids
(Eilenberg, 1974, p. 299). The subsequent discussion will refer to a finite
setΣ of input symbols and a finite setΓ of output symbols. The free monoid
generated byΣ is called〈Σ∗, ·〉, or Σ∗ for short, and has the property that
every element (string)x∈ Σ∗ has a unique factorization in terms of elements
(symbols) ofΣ. This means that a morphismg : Σ∗→Γ∗ from the free monoid
Σ∗ to the free monoidΓ∗ is completely characterized byg|Σ, the restriction of
g to the input alphabetΣ. Conversely, this allows us to define the following
notion:
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DEFINITION 1 (Free monoid morphism). Given a functionf : Σ→Γ∗ define
f ∗ to be the unique monoid morphismf ∗ : Σ∗→ Γ∗ such thatf ∗(x) = f (x) for
all x∈ Σ; moreover f ∗ preserves the monoid’s productf ∗(yz) = f ∗(y) f ∗(z)
(for all y,z∈ Σ∗) and unit elementf ∗(ε) = ε .

At the core of the learning task is then the problem of finding asuitable
function f : Σ→ Γ∗ mapping from individual input symbols to output strings.
In this paper we focus on two classes of functions. The first class restricts
the codomain to strings of length one. Iff : Σ → Γ is such a function –
an alphabetic substitution – thenf ∗ is a very fine morphism, according to
Eilenberg (1974: 6). The second class is a superset of the first and allows the
empty string in the codomain. Eilenberg (1974) calls the morphism f ∗ a fine
morphismif its underlying functionf is of typeΣ→{ε}∪Γ. For the specific
problem of learning letter to sound rules, we restrict our attention to fine
morphisms, since by our previous assumption letter stringsare never shorter
than their corresponding phoneme strings, so a fine morphismis formally
adequate. In general we may want to consider other kinds of morphisms, for
example those arising from functions of typeΣ→ {ε} ∪Γ∪Γ2. However,
most practically relevant classes of morphisms will contain the class of fine
morphisms, and therefore the problems arising from the use of fine mor-
phisms will carry over to more general settings. By restricting our attention to
fine morphisms we have narrowed down the initial learning task considerably,
as the hypothesis spaceH is now the set of functions of typeΣ→ {ε}∪Γ,
which is always finite (though usually very large) for fixed finite alphabetsΣ
andΓ. Moreover, since log|H|= |Σ| log(1+ |Γ|) the sample complexity for
this hypothesis space is polynomial.

2.3. CONSISTENT HYPOTHESES AND LOSS FUNCTIONS

Polynomial sample complexity is one of the two key ingredients for PAC
learnability (Valiant, 1984; Kearns and Vazirani, 1994), the other being com-
putational complexity, which is the topic of the next section. However, the
present problem does not meet all conditions of the PAC learning framework,
which assumes the existence of consistent hypotheses. If a consistent hypoth-
esis could be found for a sufficiently large training set – in other words,
if there were a fine morphism consistent with all entries in a sufficiently
large training dictionary – the PAC learning framework would give us certain
guarantees about the quality of such a hypothesis.

The assumption of consistent hypothesis is not exclusive toPAC learning.
In fact, most classical conceptualizations of learning arebased on the same
assumption, including identification in the limit (Gold, 1967). That is to say,
these frameworks assume that a learner which can identify a given concept
class will be presented with clean training data which illustrate a concept
from that same class.
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6 M. Jansche

Unfortunately, this assumption is untenable in many practical situations,
since the details of the process which generated the training data are generally
unknown. In the case of letter-to-sound rules, for example,Lucassen and
Mercer (1984) have demonstrated empirically that the transduction process
is overwhelmingly local. However, there are no theoreticalguarantees of lo-
cality, so modeling letter-to-sound rules with local transductions has to be
viewed as an approximation, albeit a very good one. A learnershould be able
to gracefully deal with deviations from this assumption, regardless of whether
they arise from real deficiencies of the model (i.e., the realtransduction pro-
cess is actually not local) or from deficiencies of the training data due to
inconsistencies.

In other words, in practice one is often interested in findingthe ‘best’
hypothesis, regardless of whether it is consistent with thetraining data. In
this situation learning is better conceptualized as empirical risk minimization
(but see Minka, 2000), or more formally as agnostic learning(Kearns et al.,
1992).

Here we focus exclusively on empirical risk minimization, which says
that the ‘best’ hypothesis is one whose empirical risk is minimal among all
competing hypotheses. In our case, the empirical riskR(h) of a hypothesis
h : Σ∗→Γ∗ is its average loss on a (multi)set of training samplesD⊆ Σ∗×Γ∗,
namely

R(h) =
1
|D| ∑

〈x,y〉∈D

L(h(x),y)

whereL : Γ∗×Γ∗→Q≥0 is a so-calledloss function, assigning a non-negative
rational number (loss) to each pair of output strings. The most commonly
used generally applicable loss functions for comparing strings are zero–one
loss

Lid(y
′,y) =

{

0 if y′ = y
1 otherwise

and LLev, the Levenshtein string edit distance (Wagner and Fischer,1974;
Kruskal, 1983). Both kinds of loss play a role in evaluating letter-to-sound
rules: for example, Damper et al. (1999: 164) use zero–one loss, and Fisher
(1999) uses string edit distance (see also Jansche, 2003).

We adopt the usual requirement thatL(y′,y) = 0 if and only if y′ = y,
which is obviously the case forLid, and also holds forLLev provided the cost
for matches is zero and the costs for insertions, deletions and substitutions
are all nonzero, which is the case for the traditional Levenshtein distance
(Kruskal, 1983). The only other condition we impose is that loss functions
be computable in polynomial time, since otherwise efficientempirical risk
minimization would be hopeless from the start. Zero–one loss can be com-
puted in linear time, and edit distance in quadratic time, using a well-known
dynamic programming algorithm (Wagner and Fischer, 1974).All efficiently

manuscript.tex; 18/08/2004; 7:04; p.6
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computable metrics (in the sense of metric spaces) qualify as loss functions,
though we do not require loss functions to be symmetric or to satisfy the
triangle inequality. The requirement thatL(y′,y) = 0 iff y′ = y is crucial in
our case, since it allows us to tie empirical risk minimization to the existence
of consistent hypotheses: observe thatR(h) = 0 iff h is consistent.

To summarize, the task of learning letter-to-sound rules serves as an illus-
tration of the problem of learning local transductions, which has at its core the
problem of inferring morphisms of free monoids. We focus on the restricted
problem of learning so-called fine morphisms, which leads toa finite hypothe-
sis space that is formally adequate for letter-to-sound transductions. Learning
will initially be viewed as empirical risk minimization under arbitrary loss
functions, as defined above.

3. Computational complexity

3.1. OPTIMIZATION PROBLEM

The problem of finding a functionf : Σ → {ε} ∪ Γ for which the empir-
ical risk R( f ∗) is minimal is fundamentally a combinatorial optimization
problem. Like all such problems it can be stated formally in different ways
(Papadimitriou and Steiglitz, 1998, p. 345f.): theoptimization versionasks for
the optimal f for which the riskR( f ∗) is minimal on a given set of samples
D⊆ Σ∗×Γ∗; theevaluation versionasks for the average lossR( f ∗) incurred
on D by the optimalf , but does not demand that we find that optimalf ; and
thedecision versionof the empirical risk minimization problem asks whether
there exists anf such that the average loss incurred by it onD is less than
or equal to a given budgetk, that is, whether or notR( f ∗) ≤ k for some f .
A solution to the optimization version could be used to construct an answer
to the evaluation version, which in turn could be used to solve the decision
version. Contrapositively, if the decision version is hardto solve, so are the
other two versions.

The decision version of the empirical risk minimization problem can now
be stated formally, for any fixed loss functionL that satisfies the criteria set
out in the preceding section. The formal problem is presented in the familiar
format used by Garey and Johnson (1979).

PROBLEM 1 (Fine Morphism Minimization).Instance:A finite (multi)set
D ⊆ Σ∗×Γ∗ of training samples; and a non-negative rational numberk, the
risk budget.Question:Is there a functionf : Σ→ {ε}∪Γ, corresponding to
a fine morphismf ∗, such thatk · |D| ≥ ∑〈x,y〉∈D L( f ∗(x),y)?

This is the most general problem we consider, but we will not discuss
it much further, since its complexity may depend on the details of the loss
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8 M. Jansche

function L. However, because we requireL(y′,y) = 0 iff y′ = y for all loss
functionsL considered here, there is a common subproblem of the decision
version which is independent of the loss function used. If weset the risk
budget to zero, we obtain a restricted decision version which asks whether
there exists anf such that the riskR( f ∗) incurred onD is identically zero. We
call this theconsistency problem, sinceR( f ∗) = 0 means thatf ∗ is consistent
with the training dataD. Obviously, if the decision version of the optimiza-
tion problem can be solved efficiently, so can the consistency problem. In
other words, the formal problems considered so far can be arranged in non-
decreasing order of difficulty like this: consistency problem, decision version,
evaluation version, and optimization version of the optimization problem. By
establishing NP hardness of the easiest of these four problems, NP hardness
of the other problems follows straightforwardly.

3.2. CONSISTENCY PROBLEM

Before we can formally state the consistency problem underlying the learning
task, we need another auxiliary definition:

DEFINITION 2 (Graph of a relation). Given a relationR on setsA and B,
define #R, thegraph of R, to be the set{〈a,b〉 ∈ (A×B) |aRb}.

Two closely related consistency problems can now be defined.An answer
to the questions asked by these problem would tell us whethera suitable
morphism exists that perfectly fits the training dataD.

PROBLEM 2 (Very Fine Morphism Consistency – VFMC).Instance:A fi-
nite (multi)setD⊆ Σ∗×Γ∗ of training samples.Question:Does there exist a
very fine morphism consistent with all elements ofD, i.e., is there a function
f : Σ→ Γ such thatD⊆ #( f ∗)?

PROBLEM 3 (Fine Morphism Consistency – FMC).Instance:A finite (multi)-
setD ⊆ Σ∗×Γ∗ of training samples.Question:Does there exist a fine mor-
phism consistent with all elements ofD, i.e., is there a functionf : Σ→
{ε}∪Γ such thatD⊆ #( f ∗)?

The size of an instance of one of these problems is the total length of all
strings in the training dictionaryD:

DEFINITION 3 (Dictionary size). Define the size‖D‖ of a dictionaryD ⊆
Σ∗×Γ∗ as

‖D‖= ∑
〈x,y〉∈D

|x|+ |y|

where|x| is the length of stringx.
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1: {Input: instanceD, certificatef}
2: for all 〈x,y〉 ∈ D do
3: j← 1
4: for i← 1 to |x| do
5: if f (xi) 6= ε then
6: if j > |y| then
7: return False
8: else if f (xi) 6= y j then
9: return False

10: else { f (xi) matchesy j}
11: j← j +1
12: if j 6= |y|+1 then
13: return False
14: return True

Figure 1. Certificate verification algorithm for FMC.

Of the two problems formulated here, FMC (Problem 3) is intuitively
more difficult than VFMC (Problem 2), since one has to decide which input
symbols are mapped to the empty string, or equivalently, howan output string
should be aligned with its corresponding input string. Thisissue does not arise
with VFMC, since only strings of equal length need to be considered (ifD
contains a pair of strings with different lengths, then no very fine morphism
can be consistent withD). It will be shown that FMC is a complete problem
for the complexity class NP (see, for example, Garey and Johnson, 1979).
Membership of FMC in NP can be established straightforwardly:

THEOREM 1.Problem FMC has succinct certificates that can be verified in
polynomial time.

Proof. A certificate for FMC is a partial functionf : Σ→ {ε} ∪ Γ, which
can be represented in space linear in‖D‖ (becausef only needs to mention
elements ofΣ that occur inD). Verification amounts to applyingf ∗ to each
input string inD and comparing the results to the corresponding reference
output. The verification procedure, shown in Figure 1, runs in linear time and
logarithmic space (a fixed number of counters need to be stored).

Problem VFMC for very fine morphisms is indeed much easier than prob-
lem FMC involving fine morphisms. In fact, VFMC can be solved efficiently
in linear time and space by the following procedure: for each〈x,y〉 ∈ D, for
i ← 1 to |x|, assign (destructively)f (xi) ← yi ; finally run the verification
algorithm from Figure 1 onD and f , and return its answer.

NP-hardness of FMC is established by a reduction from 3SAT, the deci-
sion problem asking whether there is a satisfying truth assignment for a set
(conjunction) of disjunctive clauses with at most three literals each, where a
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10 M. Jansche

literal consists of a plain Boolean variable or of a negated Boolean variable.
In other words, an instance of 3SAT is a formulaφ in Conjunctive Normal
Form with 3 literals per clause (3CNF), and the problem is to decide whether
there is a satisfying truth assignment forφ that makes all clauses True. We
first define the individual pieces (gadgets) of the reductionfrom 3SAT and
then prove that the reduction correctly preserves the structure of 3SAT.

DEFINITION 4 (Boolean variable gadget). For any Boolean variable v, the
setV(v) contains the following pairs (av andbv are two new symbols depen-
dent onv):

〈avvvbv,FTF〉,

〈avbv,F〉.

The Boolean variable gadget encodes the fact that a variableoccurring in a
3CNF formula can take on only the valuesT (True) andF (False). It consists
of two entries that will become part of a larger dictionary constructed by the
reduction. As will become clear below, a fine morphism that isconsistent with
that dictionary can map the symbolsv andv only to T or F, and mapsv to T
iff it maps v to F. To ensure thatav andbv do not appear in any gadgets for
other, unrelated variables, new concrete symbolsav andbv have to be chosen
for each variablev. It is easy to see that‖V(v)‖ = 10.

DEFINITION 5 (3SAT clause gadget). For any 3SAT clauseCi of the form
(l i1∨ l i2∨ l i3) (where eachl i j is a literal of the formv or v) the setC(Ci)
contains the following pairs (ci j , di j , ei and fi for 1≤ j ≤ 3 are eight new
symbols dependent oni):

〈ci1 l i1 di1,FT〉,

〈ci2 l i2 di2,FT〉,

〈ci3 l i3 di3,FT〉,

〈di1 di2 di3 ei fi ,TT〉.

The 3SAT clause gadget represents the constraint that in a clauseC of the
form (l1∨ l2∨ l3) at least one literall j must be true for the overall formula
to be satisfied. We will see shortly that a fine morphism must map at least
one literal l i j to T and the adjacent symboldi j to ε in order for it to be
consistent with the fourth pair in this dictionary. As in theBoolean variable
gadget, the symbols other than those corresponding to literals or variables
of the original formula must be unique for each clause, so that there are no
additional constraints between clauses not present in the 3CNF formula. For
each clauseC we have‖C(C)‖ = 22.

DEFINITION 6 (Reduction from 3SAT). Given an instance

φ =
n

∧

i=1

Ci
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of 3SAT, defineD(φ) as the collection

n
⋃

i=1

C(Ci) ∪
⋃

{V(v) |variablev occurs inφ}.

For example, ifφ = (x∨x∨y), the dictionaryD(φ) defined by this reduc-
tion contains the following entries:

〈axxb,FTF〉, 〈ex f, FT〉,

〈ab,F〉, 〈gxh,FT〉,

〈cyyd,FTF〉, 〈iy j,FT〉,

〈cd,F〉, 〈 f h jkl,TT〉.

THEOREM 2.The reduction from 3SAT to FMC can be computed in loga-
rithmic space and creates an instance whose size is linear inthe size of the
original instance.

Proof. The reductionD, which can be made to run in linear time, builds
a collection (dictionary)D(φ) with the following properties. Letn be the
number of clauses ofφ (as in Definition 6), and letm be the number of
distinct variables ofφ (som≤ 3n). Then the dictionary size (see Definition 3)
is ‖D(φ)‖ = 10m+ 22n ≤ 52n, the number of pairs in the dictionary is
|D(φ)| = 2m+4n≤ 10n, the size of the input alphabet is|Σ|= 4m+8n≤
20n, and the size of the output alphabet is|Γ| = 2. Only counters need to
be stored for computing the reduction (in order to keep trackof clauses and
variables represented by integers), which requires logarithmic space.

We are now ready to derive the main result, which shows that deciding
whether a fine morphism exists that is consistent with a givendictionary is at
least as hard as any other problem in NP.

THEOREM 3.Problem FMC isNP-hard.

Proof. We show that the 3CNF formulaφ =
∧n

i=1Ci is satisfiable iff there
exists a fine morphismf ∗ consistent withD(φ). It will be convenient to letV
denote the set of distinct variables ofφ .

(⇒) Assume thatφ is satisfiable, i.e., there exists a satisfying assignment
τ : V → {T,F}. Incrementally define a fine morphismf ∗ consistent with
D(φ) as follows: for allv∈V, let f (v) = τ(v) and f (v) = τ(v). If τ(v) = T,
let f (av) = F and f (bv) = ε , which makesf ∗ consistent withV(v); otherwise,
if τ(v) = F, let f (av) = ε and f (bv) = F to makef ∗ consistent withV(v). In
either casef ∗ can be made consistent withV(v), and becauseav andbv do
not occur outside the gadget forv, f ∗ can be made consistent with all variable
gadgets.
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12 M. Jansche

The fact thatτ is a satisfying assignment means that in each clauseCi at
least one literal is made True byτ . So f will map at most twodi j in C(Ci)
to T, and therefore the definition off ∗ can always be extended to make it
consistent with the fourth pair inC(Ci) and hence consistent with the entire
clause gadget forCi. Since all symbols in a clause gadget other than literals
of φ occur only in that gadget, the definition off ∗ can be extended to make it
consistent with all gadgets and therefore consistent withD(φ). Hence there
exists a consistent fine morphismf ∗ constructible fromτ .

(⇐) Conversely, assume that a fine morphismg consistent withD(φ)
exists. Show thatg|V , i.e. g restricted to the variables ofφ , is a satisfying
truth assignment forφ . The morphismg being consistent withD(φ) means
thatg is consistent with all variable gadgets and all clause gadgets.

Pick any variable gadgetV(v). Then, because of the second pair inV(v), g
must map exactly one ofav andbv to F: if g(av) = F theng(bv) = ε , and for
the first pairg(v) = T andg(v) = F; otherwise ifg(bv) = F theng(av) = ε ,
g(v) = F, andg(v) = T. Note in particular that(g|V)(v) ∈ {T,F}, sog|V is
formally a truth assignment.

Now pick any clause gadgetC(Ci) and suppose thatg maps nol i j in C(Ci)
to T. Then alldi j in C(Ci) are mapped toT because of the first three pairs in
that clause gadget. But this would makeg inconsistent with the fourth pair,
contradicting the assumption thatg is consistent with all clause gadgets. So
g must map at least onel i j in C(Ci) to T, which means thatg|V makes the
clauseCi True, and is therefore a satisfying truth assignment forφ .

The choice of output alphabetΓ = {T,F}was made merely for expository
convenience. What makes FMC a hard problem is not the choice of mapping
input symbols toT or F, but the choice of whether to delete an input symbol
by mapping it to the empty stringε . It is in fact possible to modify the re-
duction so that|Γ|= 1 without changing the main theorem, though its proof
would be somewhat less intuitive.

3.3. CONSEQUENCES

The preceding three theorems together imply that the consistency problem
FMC is NP-complete. The existence of efficient algorithms for solving FMC
is therefore unlikely. In practice, it is not sufficient to know whether a con-
sistent fine morphism exists, we also need to find such a morphism. Even if
an oracle could tell us that there is at least one consistent morphism, find-
ing one is still a difficult problem, analogous to the 3SAT function problem
for satisfiable formulas, which is FNP-complete (Papadimitriou, 1994). The
fact that consistency problem is hard also means that PAC learning of local
transductions based on fine morphisms is impossible.

Since FMC is a special subproblem of empirical risk minimization, it
follows immediately that the decision version of this optimization problem
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is NP-hard. It is also NP-complete, since by our earlier assumption the loss
function L can be evaluated efficiently in polynomial time: a proposed solu-
tion f for the decision version can be verified efficiently by aggregating the
total loss off ∗ on the training dataD and comparing it against the loss bound
k · |D|. Not surprisingly, the certificate verification algorithm in Figure 1 is
a special case of this more general verification algorithm for the decision
version of the empirical risk minimization problem.

The evaluation and optimization version of empirical risk minimization
do not necessarily fall within the analogous class FNP of function problems.
To show membership in FNP, we need to be able to verify the optimality of
a proposed solutionf in polynomial time. However, an optimal solutionf
only certifies the existence of a feasible solution (namelyf ) within a certain
budgetk (namely the average loss off ∗ on the training data), but does not
seem to provide enough information to verify in polynomial time that no bet-
ter solution within a tighter budget ofk−δ can exist. It is highly doubtful that
there are any polynomial-length certificates of optimality. We conjecture that
these problems are in fact FPNP-complete, just like the Traveling Salesperson
Problem TSP (see, for example, Papadimitriou, 1994).

4. Conclusions and directions for further research

We have reduced the problem of learning local transductionsto the prob-
lem of learning morphisms on free monoids, after factoring out an optional
preprocessing step that accumulates fixed amounts of context. The important
restricted problem of deciding whether there exists a fine morphism consis-
tent with a set of training samples was shown to be NP-complete. Since this
problem is a specialization of the decision version of empirical risk minimiza-
tion under many reasonable loss functions, the optimization problems which
generalize the consistency problem are therefore at least as difficult.

While the main result of this paper seems discouraging, all is not lost.
Given that the existence of exact efficient algorithms for solving the over-
all optimization problem is unlikely, one should consider the alternatives:
approximate, inefficient, and/or heuristic algorithms.

4.1. COMPLEXITY OF APPROXIMATION

Approximate inference of consistent automata is generallya very hard prob-
lem (Pitt and Warmuth, 1993). For the special cases considered here, the
complexity of approximate inference is not well understoodat this point, and
our initial results reported elsewhere (Jansche, 2003) in more detail are not
encouraging.

Empirical risk minimization can now mean one of two things: minimizing
the total number of mistakes a hypothesis makes on the training data, or
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maximizing the number of correct predictions on the training data. These two
notions are equivalent if optimal solutions can be found exactly, but differ for
approximate solutions. Say the true optimum is 10 mistakes on 100 samples,
and the optimum can be approximated within a factor of 1.2: approximate
maximization would find a solution with at most 100−90/1.2 = 25 mistakes,
but approximate minimization yields a solution with at most10× 1.2 = 12
mistakes.

Even for highly restricted problems the prospects are rather bleak. The
optimization problem that asks us to maximize empirical string-level classi-
fication accuracy (the dual of empirical zero–one loss, i.e.string-level clas-
sification error) for very fine morphisms will be called MAX-VFMC. It is
initially far from clear whether MAX-VFMC is an easy or a hardproblem –
recall that we showed in Section 3.2 that VFMC can be solved very efficiently
– but it turns out (Jansche, 2003) that MAX-VFMC is APX-hard (Ausiello
et al., 1999), which can be shown by a reduction from an APX-complete
constraint satisfaction problem. Unless P= NP, this means that MAX-VFMC
has no polynomial time approximation schemes (PTAS, which would allow
us to find arbitrarily good approximations efficiently). In the best case, there
may be an approximation algorithm for MAX-VFMC with a fixed approxi-
mation ratio, which would make MAX-VFMC a member of the classAPX;
whether or not this is the case is an open question. Similar questions regarding
the complexity of related optimization problems also remain open (Jansche,
2003).

4.2. INEFFICIENT ALGORITHMS

Exact global optimization of MAX-VFMC is theoretically possible via branch-
and-bound search. This inefficient algorithm can be used forvery small prob-
lem instances, e.g., learning English letter-to-sound rules with no condition-
ing context, for which only a few trillion morphisms have to be explored
(Jansche, 2003). However, exhaustive search becomes intractable for even
slightly larger problems: for English letter-to-sound rules conditioned on one
letter of context there are more than one trequadragintillion feasible solutions.
General heuristic algorithms, especially those based on local search (Aho
et al., 1983; Papadimitriou and Steiglitz, 1998), are efficient and do in practice
improve on greedily constructed initial solutions, but offer no performance
guarantees. Inefficient and heuristic algorithms for solving Boolean satisfia-
bility problems have been investigated in detail and might yield new insights
on solving the formal problems presented in this paper.

4.3. HEURISTICS

Efficient heuristics developed specifically for learning letter-to-sound rules
have been in use for at least two decades (Lucassen and Mercer, 1984). Most
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of them reduce the problem of learning local transductions to a classifier
learning problem similar to what we have called MAX-VFMC, which in-
volves padding the data with dummy symbols to make input and output strings
equal in length. Unfortunately, this reduction does not preserve the structure
of the original problem (Jansche, 2003), so that even if an optimal classifier
could be found – which can be a hard problem in itself (Hyafil and Rivest,
1976) – it would not necessarily be an optimal solution for the original learn-
ing problem. It is because of this disconnect that the traditional approaches to
learning letter-to-sound rules have to be seen as heuristics.

Although such approaches may seem ad hoc, there have been a number
of empirical investigations (Damper et al., 1999; Bakiri and Dietterich, 2001)
that find heuristic machine learning techniques preferableto knowledge rep-
resentations built by human experts, though the issue remains contentious
(Sproat et al., 1998). Since we concluded that the existenceof sound and
efficient learning algorithms for local transductions is unlikely, this can be
seen as additional justification for the use of heuristics.
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