Chapter 9

Learning local transductions is hard

MARTIN JANSCHE*

ABSTRACT.  Local deterministic string-to-string transductions aeneralizations of mor-
phisms on free monoids. Learning local transductions resido inference of monoid mor-
phisms. However, learning a restricted class of morphishesso-called fine morphisms, is an
intractable problem, because the decision version of tharezal risk minimization problem
contains arNP-complete subproblem.

9.1 Introduction

Symbolic approaches to natural language processing)(based on finite au-
tomata (Roche and Schabes, 1997) suffer from a shortagdw$trpractical in-
ference procedures. If inductive inference is understaotdantification in the
limit’ (Gold, 1967), then regular languages cannot be r&féron the basis of posi-
tive data alone. Most learning algorithms proposedviar tasks therefore employ
different notions of inference, or aim at more restrictegssks of languages, and
they generally have to work with imperfect data.

This paper is about the problem of learning local transdyjcerestricted sub-
class of the generalized sequential machines (Eilenb&t#)1 and inference is
understood as empirical risk minimization. The generabjem is illustrated by a
specificNLP task, namely learning letter-to-sound rules (see for exawgn den
Bosch, 1997) from a pronunciation dictionary. In this tdkle, training samples are
pairs of strings, consisting of a string of letters — for epgar{shoe$ — and a string
of phonemes — for exampl¢uz/. Note that no relation between individual letters
and phonemes is specified, which is to say one do¢&now whether the second
symbol in fuz/, the phonemeu/, corresponds to the second symbol(ghoe$,
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the letter(h). In this sense the present task is markedly different framerotom-
monNLP tasks — such as learning part-of-speech assignment rulegrewexplicit
correspondences between input and output symbols exist.

In general, a letter string may correspond to a longer phenstning, for ex-
amplé

(mutualisn (9 letters) mjutfowslizom/ (12 phonemes),
or to a shorter phoneme string, such as
(featherweight (13 letters) fedawet/ (7 phonemes);
and even if the two strings happen to have the same length, as i
(parliamentarianisin(18 letters) pailomonterionizom/ (18 phonemes),

no alignment is implied. One usually assumes that letterggrare of equal length

or longer than their corresponding phoneme strings. Wihdarty false in an ab-
solute sense, this assumption is true for most English worise than 98% of
the entries in themu pronouncing dictionary), and workarounds for cases where
it seems to break down have been suggested, for examplatisetiption system
used bynETtalk (Sejnowski and Rosenberg, 1987).

Learning letter-to-sound rules can be conceptualized asmpatical inference
of specific subclasses of rational transductions. For tesabf subsequential trans-
ductions, limit-identification is possible (Oncina et 4093) and has been applied
to the closely related problem of phonemic modeling (Gilded Jurafsky, 1996),
but only after modifications and incorporation of domaieafic knowledge. It
can be shown that the algorithm proposed by Oncina et al.3j18&8s poor out-
of-class behavior and is brittle in the presence of impérnfiaca; furthermore its
hypothesis space, the class of subsequential transdsicisoarguably too general
for the present task. Almost all approaches to learningnétt-sound rules as-
sume, justifiably, that the hypothesis space is restrici¢de analog of the locally
testable languages in the strict sense (McNaughton andtP&p&2), which are
limit-identifiable (Garcia and Vidal, 1990). We call theadwgous class of trans-
ductionslocal transductions

Local transductions are computed by scanner transduclishwnove a slid-
ing window of fixed size across the input string and producériagsof output
symbols for each window position; concatenating theseuiwtpings yields the
overall output of the transducer. Since the size of therglidvindow is fixed,
one can assume without loss of generality that it is 1. If gdawindow sizen is

1The following examples are taken from thetu pronouncing dictionary (Weide, 1998). Phone-
mic transcriptions have been changed to wsg(International Phonetic Association, 1999).



83\ Mathematics of Language 8

needed, one can simply change the input alphabet to cofsigtiples of symbols,

and such a modified alphabet is obviously still finite; alétrely, one can think of

this modification as a preprocessing step that applies dsisojpsequential trans-
ducer to each input string. Functional transductions tkatreéne individual input

symbols (letters, on-tuples of letters) without taking any context into acco(ant

finite amount of history or lookahead can be incorporated the modified sym-

bols created by the preprocessing step) can be realizedrigyajzed sequential
machines with a trivial one-state topology and corresporattty to morphisms

on free monoids (Eilenberg, 1974, p. 299).

The subsequent discussion will refer to a finite Seif input symbols and a
finite setl" of output symbols. The free monoid generated>big called~* and
has the property that every element (strikgd 2* has a unique factorization in
terms of elements df. This means that a morphisgt 2* — I'* on free monoids
is completely characterized gy, its restriction toz. Conversely, this allows us
to define the following notion:

Definition 1 (Free monoid morphism). Given a functionf : & — ' definef* to
be the unique monoid morphisifri : Z* — ™ such thatf*(x) = f(x) for all x € Z;
f*(e) =&, and f*(yz) = f¥(y) f*(z) for ally,ze =*.

At the core of the learning task is then the problem of findirsgiéable func-
tion f : £ — '™ mapping from individual input symbols to output strings. ttis
paper we focus on two classes of functions. The first claggatssthe codomain
to strings of length one. If : Z — I is such a function — an alphabetic substitu-
tion — thenf* is avery fine morphismaccording to Eilenberg (1974, p. 6). The
second class is a superset of the first and allows the empiyg #trthe codomain.
Eilenberg (1974) calls the morphisfri afine morphisnif its underlying function
f is of typeXZ — {€} UT. For the specific problem of learning letter to sound rules
we can restrict our attention to fine morphisms, since by oevipus assumption
letter strings are never shorter than their correspondianeme strings, so a fine
morphism is formally adequate. In general we may want to identher kinds
of morphisms, for example those arising from functions p&ty — {e}ur ur?.
However, most practically relevant classes of morphisniigonobably contain the
class of fine morphisms, and therefore many of their progesiill carry over to
more general settings. By restricting our attention to firephisms we have nar-
rowed down the initial learning task considerably, as thedtlyesis spacd is now
the set of functions of type — {€} U, which is always finite (though usually very
large) for fixed finite alphabets andl". Moreover, since IfH| = |Z| In(1+ ||)
the sample complexity of this hypothesis space is polynbmia

Our conceptualization of learning is not limit-identificat, but empirical risk
minimization. Although empirical risk minimization is sa@what problematic
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(Minka, 2000), particularly if the training data are not megentative of the dis-
tribution of future data, it underlies most symbolic apptues to learning letter-to-
sound rules, as well as many otharp tasks. The empirical risk of a hypothesis
h:%* — I'* isits average loss on a set of training sames >* x ['*, namely

R= = 5 L(h(),y)

|D| (xy)eD

whereL : ' x ' — R_, is the loss function. The most commonly used generally
applicable loss functions for comparing strings are the-zare loss

0 ify=y

Lidentity()/,y) = {l otherwise
andL,qnshiein the string edit distance (see for example Kruskal, 1988}hBinds
of loss play a role in the evaluation of letter-to-sound suli®r example, Damper
et al. (1999, p. 164) use zero-one loss, and Fisher (1998)atiseg edit distance.
One generally requires thiaty,y) = 0, which is obviously the case fh{demity, and
also holds fol,.,snieinProvided the cost for matching symbols is zero.

Empirical risk minimization under zero-one loss can meaa ohtwo things:
minimizing the total number of mistakes a hypothesis makethe training data,
or maximizing the number of correct predictions. These tatioms are equivalent
if optimal solutions can be found exactly, but differ for apximate solutions.

9.2 Exact optimization

The problem of finding a functiofi : Z — {€} Ul such that the empirical risk df*
is minimal is fundamentally a combinatorial optimizatioroplem. Like all such
problems it can be stated formally in different ways (Pasitiou and Steiglitz,
1998, p. 345f.): the optimization version asks for the ogtirhfor a given set of
sampled C >* x '*; the evaluation version asks for the total loss incurre®day
the optimalf*; and the decision version asks whether there existt*auch that
the total loss incurred by it oD is less than or equal to a given budgef solution
to the optimization version could be used to construct awanso the evaluation
version, which in turn could be used to solve the decisiosiver Contrapositively,
if the decision version is hard to solve, so are the other t@rsions.

2Suppose the true global optimum among 100 samples is 10kasstand the optimum can
be approximated within a ratio of 1.2. Approximate maxintia would find a solution with at
most 100- 90/1.2 = 25 mistakes, but approximate minimization yields a sofutidth at most
10x 1.2 = 12 mistakes.
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Becausd.(y,y) = 0 for the loss function& considered here, there is a common
subproblem of the decision version which is independertiefdss function used:
the restricted decision version asks whether there exists' such that the total
loss incurred by it orD is exactly zero. We call this the consistency problem.
Obviously, if the decision version can be solved efficiergly can the consistency
problem.

Before we can formally state this key problem underlyingl#aening task, we
need another auxiliary definition:

Definition 2 (Graph of a relation). Given a relatiorR: A — B on sets, defineR
thegraph of R to be the sef(a,b) € (A x B)|aRb}.

The consistency problems for the two classes of morphismsstated in a
format similar to the one used by Garey and Johnson (1979)arswer to the
questions asked by these problem would tell us whether adaitmorphism exists
that perfectly fits the training dafa.

Problem 9.1 (Very Fine Morphism Consistency — VFMC)
Instance:A finite (multi)setD C Z* x I'* of training samples.

Question:Does there exist a very fine morphism consistent with all eleinofD,
i. e., is there a functiori : £ — I such thaD C #(*)?

Problem 9.2 (Fine Morphism Consistency — FMC)
Instance:A finite (multi)setD C Z* x I'* of training samples.

Question:Does there exist a fine morphism consistent with all elemeiiis i. e.,
is there a functiorf : X — {e} UT such thaD C #(f*)?

The size of an instance of one of these problems is the tatgtteof all strings
in the training dictionanD:

Definition 3 (Dictionary size). Define the sizd|D|| of a dictionaryD C ¥* x I'*

as
D] = g X+ 1]
(xy)eD

where|x| is the length of string.

Of the two problems formulated heremc is intuitively more difficult than
VFMC, since one has to decide which input symbols are mapped entpéy string,
or equivalently, how the output strings should be alignddtire to the inputs.
This issue does not arise wittFmc, since only strings of equal length need to
be considered (iD contained a pair of strings with different lengths, then eroyv
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1: {Input: instance, certificatef }
2: forall (x,y) € D do

3 @gran X
4 by---bmey

5 j«1

6: fori< l1ltondo

7: if f(a) # € then

8: if j > mthen

9: return false

10: else if f(a) # b; then
11: return false

12: else{f(a) matched, }
13: j—j+1

14: if j#m+ 1then

15: return false

16: return true

Figure 9.1: Certificate verification algorithm femc.

fine morphism can be consistent wiiy. It will be shown thatFmc is a complete
problem for the complexity clagdP (see for example Garey and Johnson, 1979).
Membership oFMc in NP can be established straightforwardly:

Theorem 1. ProblemFmMc has succinct certificates that can be verified in polyno-
mial time.

Proof: A certificate forFrmc is a partial functionf : ¥ — ' U {&}, which can be
represented in space linear|jp|| (becausef only needs to mention elements of
2 that occur inD). Verification amounts to applyin§* to each input string i
and comparing the results to the corresponding refereniprioul he verification
procedure, shown in Figure 9.1, runs in linear time and litlgaic space. O

As an aside, note that problemrmc for very fine morphisms can be solved
efficiently in linear time and space by the following procezluterate oveD, and
for each input symbatr setf (o) « y, wherey is the output symbol alignédvith
o; then run the verification algorithm from Figure 9.1 Dnand f, and return its
answer.

NP-hardness ofmc is established by a reduction frons8r, the decision
problem asking whether there is a satisfying truth assignrfuz a set of disjunc-

3A consistent very fine morphism can only exisbif = |y| for all (x,y) € D, which means that
andy are aligned, in the sense that titt symbol ofx corresponds to theth symbol ofy.
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tive clauses with at most three literals each. We first defieeconstruction and
then prove that it correctly preserves the structureofi3

Definition 4 (Boolean variable gadget).For any Boolean variable the set? (v)
contains the following pairsa( andb, are two new symbols dependent\gn

(awhy,FTF),
(avby,F).

Definition 5 (3SAT clause gadget).For any 3AT clauseC; of the form (I;; v
iz VIi3) (Where each; is a literal of the formv or V) the set?’(C;) contains the
following pairs (:ij, dij, g and f;, for 1 < j < 3 are eight new symbols dependent
oni):

Cyli Ghe, FT),
CiolizGha: FT),
Cigliatiz, FT),
di1dipdise £, TT).

o~ o~~~

Definition 6 (Reduction from 3SAT). Given an instancg = A ;C; of 3sAT,
defineZ(¢) as the collectionJi_; (C,) U U{¥ (v) | variablev occurs ing }.

Theorem 2. The reduction fromBsAT to FMC can be computed in logarithmic
space and creates an instance whose size is polynomial isizeeof the original
instance.

Proof: The reduction, which can be made to run in linear time, builds a collec-
tion 2(¢) with the following properties: letn be the number of distinct variables
of ¢ (som< 3n); then||2(¢)|| =10m+22n < 52n, |Z(¢)| = 2m+4n < 10n,

|Z| =4m+8n < 20n, and|l"| = 2. Only counters need to be stored for computing
the reduction (in order to keep track of clauses and varsatdpresented by inte-
gers), which requires logarithmic space. O

Theorem 3. Problemrmc is NP-hard.

Proof: We show thatp = A\[L,C; is satisfiable iff there exists a fine morphism
f* consistent withz(¢). It will be convenient to leV denote the set of distinct
variables ofg.

(=) Assume thatp is satisfiable, i. e., there exists a satisfying assignment
T:V — {T,F}. Incrementally define a fine morphisfii consistent withz(¢) as
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follows: forallveV, let f(v) = t(v) and f(v) = T(v). If T(v) =T, let f(a,) =F
and f(by) = &, which makesf* consistent with?’(v); otherwise, ift(v) = F, let
f(ay) = € andf(by) = F to makef* consistent with¥'(v). In either casd* can be
made consistent with'(v), and becausa, andb, do not occur outside the gadget
for v, f* can be made consistent with all variable gadgets.

The fact thatr is a satisfying assignment means that in each cl@se least
one literal is made true by. So f will map at most twod;; in ¢’(C;) to T, and
therefore the definition of* can always be extended to make it consistent with
the fourth pair in¢’(C;) and hence consistent with the entire clause gadgeg;for
Since all symbols in a clause gadget other than literal$ afccur only in that
gadget, the definition of* can be extended to make it consistent with all gadgets
and therefore consistent with(¢). Hence there exists a consistent fine morphism
f* constructible front.

(<) Conversely, assume that a fine morphigroonsistent withZ(¢) exists.
Show thap|,,, i. e.g restricted to the variables ¢f, is a satisfying truth assignment
for ¢. The morphisng being consistent wit¥ (¢ ) means thag is consistent with
all variable gadgets and all clause gadgets.

Pick any variable gadget' (v). Then, because of the second pairfiiv), g
must map exactly one &, andb, to F: if g(a,) = F theng(b,) = &, and for the
first pairg(v) = T andg(v) = F; otherwise ifg(b,) = F theng(a,) = €, g(v) =F,
andg(v) = T. Note in particular thatg|,/)(v) € {T,F}, sog|y is formally a truth
assignment.

Now pick any clause gadget(C,) and suppose thagtmaps nd;; in ¢(C)toT.
Then alld;; in ¢’(C;) are mapped td because of the first three pairs in that clause
gadget. But this would makginconsistent with the fourth pair, contradicting the
assumption thag is consistent with all clause gadgets. gmust map at least one
ljj in €(C;) to T, which means thag|,, makes the clausg; true, and is therefore a
satisfying truth assignment fqr. O

The preceding three theorems together imply that the densig problenFmc
is NP-complete. The existence of efficient algorithms for sajsimc is therefore
unlikely. SinceFmc is a subproblem of empirical risk minimization, the deaisio
version of this optimization problem is al$tP-complete?

The evaluation and optimization version of empirical riskiimmization do not

“Strictly speaking, the previous discussion only estabk®P-hardness of the decision version.
Showing membership ilNP is straightforward, but requires separate proofs depgndmwhich
loss function is used. For zero-one loss only a few minor fications to the certificate verification
algorithm in Figure 9.1 are required, which now has to agatethe number of mistakes and compare
it to the budgek. For loss based on edit distance, using the standard dymaogcamming algorithm
(Kruskal, 1983) ensures that certificates can be verifiediynomial time.
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seem to fall within the analogous clashIP of function problems. The reason for
this is that an optimal solutioffi only certifies the existence of a feasible solution
(namely ) within a certain budget (namely the aggregate loss f on the train-
ing data), but does not seem to provide enough informatimetify in polynomial
time that no better solution within a budgetlof 1 can exist. Itis doubtful whether
there are any polynomial-length certificates of optimaltfe conjecture that these
problems are in fadEPNP-complete, just likersp (Papadimitriou, 1994).

9.3 Approximations and heuristics

Since the existence of exact efficient algorithms for s@hre overall optimization
problem is unlikely, one should consider the alternativeggproximate, heuristic,
and/or inefficient algorithms.

Even for highly restricted problems the prospects are rdileak. The opti-
mization problem that maximizes empirical string-levelsdification accuracy (the
dual of empirical zero-one loss, i. e. string-level classatifion error) for very fine
morphisms will be calledrax -vFMC. It is far from clear whethemax -vEMC is
an easy or a hard problem, as we had shown earlievthat can be solved very
efficiently. We define the decision versionmhx -vFmMC as follows:

Problem 9.3 (Very Fine Morphism Maximization — MAX-VFMC) _
Instance:A finite sequenc® = (s,,...,$,) where eacls, € Ujen ZIxMforl<
i < n; and a natural numbérwith k < n.

Question:Does there exist a very fine morphism consistent with at lealments
of D, i. e., is there a functiorf : Z — I' and a lengthk unordered subsequence
(t;,....t,) of D such that; € #(f*) forall 1 <i < k?

We show thatvax -vEMC has probably (unles® = NP) no polynomial time
approximation schemeg1As, which would allow us to find arbitrarily good ap-
proximations efficiently). In the best case, there may begpraimation algo-
rithm for MAX -vFMC with a fixed approximation ratio, which would makex -
VFEMC a member of the clagsPX (Ausiello et al., 1999); whether or not this is the
case is an open question.

Theorem 4. ProblemMmAX -vFEMC is APX-hard.

Proof. Show this by exhibiting amP-reduction from arAPX-complete problem.

It suffices to show thauAx -k-cspis L-reducible (Papadimitriou, 1994, 309ff.) to
MAX -VFMC. MAX -k-CsPis a constraint satisfaction problem (Khanna et al., 1997)
with conjunctive constraints containing at méditerals (see also Ausiello et al.,
1999).
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Given an instance) = ((I;; A~ Aly),..., (g A Al)) of MAX-k-CSR,
construct an instance ®fAX -vFMC by mapping théth constraint(l;; A--- Al )
to the pair(l; I, ... L 1L, TF...TF) to form D (if a literal | is negative, i. e. of the
form v, thenl is simplyv). SoZ consist of the negated and unnegated variables
of ¢, andl" = {T,F}. This construction ensures that there is a truth assignment
that makes exactlyn constraints ofp true iff there exists a very fine morphisii
which is consistent with exactiy elements oD. One can construdt from 7 (and
vice versa) viaf (v) = 1(v) and f (v) = 1(v) wherev is a variable occurring im.
O

Exact global optimization of1Ax -vFMC is theoretically possible via branch-
and-bound search. While this inefficient algorithm can keglfer very small prob-
lem instances (learning English letter-to-sound rules wi conditioning context,
for which only a few trillion morphisms have to be exploreitihecomes intractable
for even slightly larger problems (for English letter-tousd rules conditioned on
one letter of context there are more than one trequadrhigintieasible solutions).
Heuristic algorithms, especially those based on localcke@Papadimitriou and
Steiglitz, 1998), are efficient and do in practice improvegoeedily constructed
initial solutions, but offer no performance guarantees.

9.4 Conclusions

We have reduced the problem of learning local transductiorthe problem of

learning morphisms on free monoids (the reduction may uevdeterministic pre-
processing of the training data). The restricted problemeziding whether there
exists a fine morphism consistent with a set of training samplas shown to be
NP-complete. Since this problem is a specialization of thesiterc version of em-

pirical risk minimization under any loss functi@nfor whichL(y,y) = 0, the larger

optimization problems which generalize the consistenoplem are generally in-
tractable.
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